
Scan to read the
full case study.

TesterApplication Tested

Sunshine.Coder improves
code quality, but starting
point determines quality
of AI refactored code

•Production-grade code
inherently follows best practices,
reducing the complexity
needed in prompts

•PoC code, lacking best practice
adherence, requires explicit
prompts with richer contextual
instructions to address issues

01

Improved LLM
architectures,
comprehensive
training data, and
superior contextual
understanding enable
newer models to more
effectively identify
and resolve
coding issues.

02

InsightsChallenges

Variability in the quality of
AI-refactored code across different
applications and LLM configurations

Key comparison metric: number of issues identified,
classified by severity levels, in both human-written
and AI-refactored versions

03

How LLMs were used in application?

Code generation (refactoring)

Parasoft specialises in automated software
testing, focusing in DevSecOps solution for
building security into critical programs like

the US Department of Defence’s Joint
Federated Assurance Center.

NCS, a pan APAC, Singapore-headquartered
technology services firm, wanted to assess
the performance of an in-house AI coding
assistant, Sunshine.Coder, which leverages

open-source code LLMs to refactor
existing Java applications.

AI-refactored
Code

What Risks Were Considered
Relevant And Tested?

Security, Compliance, and Standards Risks
AI-refactored code may:

• Inadvertently introduce security vulnerabilities, such as
improper input validation, insecure data handling, or failure
to enforce authentication and authorisation controls

•Not consistently adhere to internal corporate coding
standards or external regulatory requirements
(e.g., cybersecurity guidelines, data protection regulations)

Key question: Is AI-Refactored Code Safer and Smarter?

How Were The Risks Tested?

Approach Evaluators

Rule based logic:

Parasoft’s Jtest
automated testing suite
for code quality/security

Testing conducted on
two different codebase
profiles – Production
and Proof-of-Concept
(PoC)

Issues mapped to
compliance violations
(e.g., deviations from
security guidelines
or coding standards)

Testing conducted
without executing the
applications, focusing
purely on static
structural analysis

Powered by:

Such deviations may cause technical debt, reduce auditability,
and create hidden compliance risks

01 Deployer and Application

Is AI-Refactored Code Safer and Smarter?

A Practical Assurance Study

01
It supports developers across multiple stages of the software development lifecycle,
from initial implementation to post-deployment refactoring.

02
It leverages large language models (LLMs) to analyse and refactor Java code,
enhancing not just readability and structure, but also alignment with security,
compliance, and maintainability standards.

03
It comprises two components: an IDE extension for interactive, developer-in-the-
loop use, and a batch processing engine for automated, large-scale code
refactoring.

04
It operates as a feedback-driven loop, where AI-refactored code is evaluated
against acceptance criteria, and further refinements are applied until the target
quality is achieved — as illustrated in Figure 1.

05
The entire application runs in a secured infrastructure and is managed using a
DevSecOps platform.

This pilot project aimed to evaluate Sunshine.Coder’s effectiveness in
improving the quality and security of Java applications through AI-
driven code refactoring, leveraging large language models (LLMs) to
enhance developer productivity and assurance.

Figure 1. Iterative AI-assisted code improvement workflow for Sunshine.Coder

NCS is a leading technology services firm headquartered in Singapore,
serving clients across the Asia-Pacific region. With deep expertise in digital
transformation, cloud infrastructure, and cybersecurity, NCS continuously
explores advanced technologies to enhance software engineering practices.

Use Case
As part of this innovation agenda, the team developed an in-house AI coding assistant called
Sunshine.Coder. Designed to support enterprise-grade development workflows, Sunshine.Coder has
the following key characteristics:

The use of AI-driven tools to refactor human-written software code introduces a
variety of risk dimensions summarised in Figure 2. For this pilot, NCS and Parasoft
focused the assurance exercise on the second category: security, compliance, and
standards risks. These are the most directly assessable using static analysis and
the Common Weakness Enumeration (CWE) framework.

The goal was to evaluate whether AI-assisted code, when refactored by
Sunshine.Coder, would introduce or mitigate common weaknesses such as security
vulnerabilities, non-compliance with internal coding standards, or failure to meet
external regulatory requirements.

To independently assess the quality of AI-refactored code, NCS
partnered with Parasoft, a company specialising in automated
software testing, with a strong track record supporting mission-
critical programs such as US DoD's Joint Federated Assurance
Center (JFAC) – which promotes advanced software assurance
practices across defense acquisition programs.

For this pilot, Parasoft brought deep expertise in static code
analysis and applied its enterprise-grade tool, Parasoft’s JTest, to
assess the Java applications refactored by Sunshine.Coder. Jtest
was selected for its comprehensive capabilities in Java static
analysis, code coverage and compliance checking.

02 Testing Partner and Testing Approach

03 Risk Assessment and Testing Scope

Figure 2. Risk Categories Associated with AI-Generated Code

Severity 1: Critical issues likely to cause major security or functional failures.

Severity 2: Major defects with lower immediate risk.

Severity 3: Minor quality issues or standards violations.

04 Test Design

NCS’s Sunshine.Coder, an AI-powered assistant, with different LLMs and prompting
strategies was used to refactor two different sets of Java code: one from a mature,
production-grade system, and the other from an early-stage proof-of-concept (PoC)
application.

The refactored code was then evaluated using Parasoft Jtest, a static analysis tool
aligned with the Common Weakness Enumeration (CWE) — a globally recognised
catalogue of software vulnerabilities maintained by MITRE. CWE provides a structured
way to identify, classify, and prioritise security risks such as input validation failures or
improper error handling.

With Parasoft Jtest, all code was assessed without executing the applications. Jtest
findings were mapped against CWE categories and classified by severity:

The comparative number and severity of issues detected before and after AI refactoring
served as the primary metric to assess quality improvement, degradation, or neutrality.

Can AI-generated code be reliably evaluated
using established testing tools?To assess the

effectiveness of

AI-assisted code
improvement, NCS and
Parasoft designed an
experiment in a secure
staging environment with
strict access controls
around a simple but
important question:

05 Test Implementation

Two types of applications were
selected to reflect different
development maturity levels:

A proof-of-concept e-commerce
system, likely to contain more

inconsistent or risky code

A production-grade batch
processing system, built with
stronger adherence to coding

standards

Both codebases were processed through Sunshine.Coder, using two different LLMs: one
baseline model and one more advanced. We compared how each model performed
when asked to improve the code, first with standard prompts and later with enhanced
prompts that incorporated findings from Jtest’s security scans.

The implementation of the pilot drew on a lean but effective collaboration between NCS
and Parasoft. Over the course of 8 weeks, Parasoft supported the assurance work with
less than one full-time equivalent (FTE), providing advisory help to NCS to configure and
execute the static analysis, run the test harness, and evaluate the AI-refactored code
against industry-standard security benchmarks based on CWE.

On the NCS side, 4 developers provided part-time support throughout the pilot. Their
involvement was critical in preparing the codebases, tuning the AI prompts, and
interpreting results in the context of enterprise software standards. The team’s
combined expertise in Java development, application familiarity, and AI-assisted
programming helped ensure the testing remained relevant to real-world engineering
challenges.

Despite the modest resourcing, the collaboration enabled a high-quality evaluation that
demonstrated how GenAI tools could be tested securely and systematically within a
DevSecOps framework.

06

AI Code Quality
Depends on Source
Code Maturity

01
Stronger Models Lead
to Better Refactoring
Outcomes

02
Feedback from Static
Analysis Enhances

AI Performance

03
One-Shot Prompting
Has Limits

04

The pilot confirmed that the quality of AI-refactored output is strongly influenced by the
quality of the original human-written code. In production-grade systems, where
established best practices were already in place, AI required minimal guidance to
improve the code. However, proof-of-concept (PoC) code — often developed quickly
and without strict standards — required richer, more context-aware prompts to achieve
meaningful improvements. This demonstrates the importance of applying AI coding
tools within a structured development process, especially when dealing with less mature
or experimental codebases.

Model capability matters. The evaluation showed that more advanced large language
models, such as Qwen Coder 2.5, performed significantly better than simpler
alternatives. These models were more effective in identifying and addressing critical
coding issues, due to superior architecture, broader training data, and improved
contextual reasoning. This highlights the importance of selecting the right model for
high-assurance software engineering tasks.

One of the most valuable findings was the impact of incorporating static analysis results
directly into the AI refactoring loop. When outputs from Parasoft Jtest — based on CWE
guidelines — were used as structured input to Sunshine.Coder, the AI was able to
generate more precise and relevant fixes. This feedback mechanism was especially
beneficial for the PoC code, improving its alignment with security and coding standards.
The result is a compelling case for combining generative AI tools with traditional
assurance methods to drive higher-quality outcomes.

While simple prompts were sufficient for improving production-grade code, they were
often inadequate for more complex or inconsistent codebases. The results reinforced
that a single-pass, one-shot prompting approach has inherent limitations. More robust
results were achieved through iterative workflows that integrated feedback from
automated testing tools. This supports the view that AI-assisted programming should be
treated as a multi-step, feedback-driven process rather than a one-off task.

Across the board, the pilot reinforced a fundamental principle: AI tools are only as
effective as the engineering workflows around them. The ability of Sunshine.Coder to
enhance code quality — including addressing CWE-classified security issues — was not
just a function of the model, but of how prompts were structured, how context was
provided, and how assurance tools were integrated. With the right setup, GenAI can
transition from being a productivity booster to a trusted component of secure,
standards-aligned software development.

Insights/Lessons Learned

Applying AI
Intelligently Requires
Engineering Discipline

05

As shown in Figure 3, static analysis using Parasoft Jtest plays a pivotal role at multiple points in the workflow. It first scans the original
source code to identify weaknesses, then these findings are passed back to the AI system to build context-rich prompts. Sunshine.Coder
refactors the code accordingly, and Jtest is triggered again to evaluate the AI-generated output. This iterative, feedback-driven process,
tightly aligned with CWE standards, ensures that security is systematically improved — not assumed.

By embedding generative AI into a secure, test-validated DevSecOps
pipeline, this pilot demonstrates a scalable model for responsible and
standards-aligned GenAI development. It’s not just about using AI — it’s
about using it intelligently, iteratively, and with assurance at every step.

06 Insights/Lessons Learned

