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TesterApplication Tested

Sunshine.Coder improves 
code quality, but starting 
point determines quality
of AI refactored code

•Production-grade code 
inherently follows best practices, 
reducing the complexity 
needed in prompts

•PoC code, lacking best practice 
adherence, requires explicit 
prompts with richer contextual 
instructions to address issues

01

Improved LLM 
architectures, 
comprehensive 
training data, and 
superior contextual 
understanding enable 
newer models to more 
effectively identify 
and resolve 
coding issues.
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InsightsChallenges

Variability in the quality of 
AI-refactored code across different 
applications and LLM configurations

Key comparison metric: number of issues identified, 
classified by severity levels, in both human-written 
and AI-refactored versions
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How LLMs were used in application?

Code generation (refactoring)

Parasoft specialises in automated software 
testing, focusing in DevSecOps solution for 
building security into critical programs like 

the US Department of Defence’s Joint 
Federated Assurance Center.

NCS, a pan APAC, Singapore-headquartered 
technology services firm, wanted to assess 
the performance of an in-house AI coding
assistant, Sunshine.Coder, which leverages 

open-source code LLMs to refactor
existing Java applications.

AI-refactored 
Code

What Risks Were Considered 
Relevant And Tested?

Security, Compliance, and Standards Risks 
AI-refactored code may:

• Inadvertently introduce security vulnerabilities, such as 
improper input validation, insecure data handling, or failure 
to enforce authentication and authorisation controls

•Not consistently adhere to internal corporate coding 
standards or external regulatory requirements 
(e.g., cybersecurity guidelines, data protection regulations)

Key question:  Is AI-Refactored Code Safer and Smarter?

How Were The Risks Tested?

Approach Evaluators

Rule based logic:

Parasoft’s Jtest 
automated testing suite 
for code quality/security

Testing conducted on 
two different codebase 
profiles – Production 
and Proof-of-Concept 
(PoC)

Issues mapped to 
compliance violations 
(e.g., deviations from 
security guidelines 
or coding standards)

Testing conducted 
without executing the 
applications, focusing 
purely on static 
structural analysis
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Such deviations may cause technical debt, reduce auditability, 
and create hidden compliance risks



01 Deployer and Application

Is AI-Refactored Code Safer and Smarter? 

A Practical Assurance Study

01
It supports developers across multiple stages of the software development lifecycle, 
from initial implementation to post-deployment refactoring.

02
It leverages large language models (LLMs) to analyse and refactor Java code, 
enhancing not just readability and structure, but also alignment with security, 
compliance, and maintainability standards.

03
It comprises two components: an IDE extension for interactive, developer-in-the-
loop use, and a batch processing engine for automated, large-scale code 
refactoring.

04
It operates as a feedback-driven loop, where AI-refactored code is evaluated 
against acceptance criteria, and further refinements are applied until the target 
quality is achieved — as illustrated in Figure 1.

05
The entire application runs in a secured infrastructure and is managed using a 
DevSecOps platform.

This pilot project aimed to evaluate Sunshine.Coder’s effectiveness in 
improving the quality and security of Java applications through AI-
driven code refactoring, leveraging large language models (LLMs) to 
enhance developer productivity and assurance.

Figure 1. Iterative AI-assisted code improvement workflow for Sunshine.Coder

NCS is a leading technology services firm headquartered in Singapore, 
serving clients across the Asia-Pacific region. With deep expertise in digital 
transformation, cloud infrastructure, and cybersecurity, NCS continuously 
explores advanced technologies to enhance software engineering practices.

Use Case
As part of this innovation agenda, the team developed an in-house AI coding assistant called 
Sunshine.Coder. Designed to support enterprise-grade development workflows, Sunshine.Coder has 
the following key characteristics:



The use of AI-driven tools to refactor human-written software code introduces a 
variety of risk dimensions summarised in Figure 2. For this pilot, NCS and Parasoft 
focused the assurance exercise on the second category: security, compliance, and 
standards risks.  These are the most directly assessable using static analysis and 
the Common Weakness Enumeration (CWE) framework.  



The goal was to evaluate whether AI-assisted code, when refactored by 
Sunshine.Coder, would introduce or mitigate common weaknesses such as security 
vulnerabilities, non-compliance with internal coding standards, or failure to meet 
external regulatory requirements.

To independently assess the quality of AI-refactored code, NCS 
partnered with Parasoft, a company specialising in automated 
software testing, with a strong track record supporting mission-
critical programs such as US DoD's Joint Federated Assurance 
Center (JFAC) – which promotes advanced software assurance 
practices across defense acquisition programs.



For this pilot, Parasoft brought deep expertise in static code 
analysis and applied its enterprise-grade tool, Parasoft’s JTest, to 
assess the Java applications refactored by Sunshine.Coder.  Jtest 
was selected for its comprehensive capabilities in Java static 
analysis, code coverage and compliance checking.

02 Testing Partner and Testing Approach

03 Risk Assessment and Testing Scope

Figure 2. Risk Categories Associated with AI-Generated Code



Severity 1: Critical issues likely to cause major security or functional failures.

Severity 2: Major defects with lower immediate risk.

Severity 3: Minor quality issues or standards violations.

04 Test Design

NCS’s Sunshine.Coder, an AI-powered assistant, with different LLMs and prompting 
strategies was used to refactor two different sets of Java code: one from a mature, 
production-grade system, and the other from an early-stage proof-of-concept (PoC) 
application. 



The refactored code was then evaluated using Parasoft Jtest, a static analysis tool 
aligned with the Common Weakness Enumeration (CWE) — a globally recognised 
catalogue of software vulnerabilities maintained by MITRE. CWE provides a structured 
way to identify, classify, and prioritise security risks such as input validation failures or 
improper error handling. 



With Parasoft Jtest, all code was assessed without executing the applications. Jtest 
findings were mapped against CWE categories and classified by severity:

The comparative number and severity of issues detected before and after AI refactoring 
served as the primary metric to assess quality improvement, degradation, or neutrality.

Can AI-generated code be reliably evaluated 
using established testing tools?To assess the 

effectiveness of 

AI-assisted code 
improvement, NCS and 
Parasoft designed an 
experiment in a secure 
staging environment with 
strict access controls 
around a simple but 
important question:

05 Test Implementation

Two types of applications were 
selected to reflect different 
development maturity levels:

A proof-of-concept e-commerce 
system, likely to contain more 

inconsistent or risky code

A production-grade batch 
processing system, built with 
stronger adherence to coding 

standards

Both codebases were processed through Sunshine.Coder, using two different LLMs: one 
baseline model and one more advanced. We compared how each model performed 
when asked to improve the code, first with standard prompts and later with enhanced 
prompts that incorporated findings from Jtest’s security scans. 



The implementation of the pilot drew on a lean but effective collaboration between NCS 
and Parasoft. Over the course of 8 weeks, Parasoft supported the assurance work with 
less than one full-time equivalent (FTE), providing advisory help to NCS to configure and 
execute the static analysis, run the test harness, and evaluate the AI-refactored code 
against industry-standard security benchmarks based on CWE. 

On the NCS side, 4 developers provided part-time support throughout the pilot. Their 
involvement was critical in preparing the codebases, tuning the AI prompts, and 
interpreting results in the context of enterprise software standards. The team’s 
combined expertise in Java development, application familiarity, and AI-assisted 
programming helped ensure the testing remained relevant to real-world engineering 
challenges. 



Despite the modest resourcing, the collaboration enabled a high-quality evaluation that 
demonstrated how GenAI tools could be tested securely and systematically within a 
DevSecOps framework.
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AI Code Quality 
Depends on Source 
Code Maturity

01
Stronger Models Lead 
to Better Refactoring 
Outcomes

02
Feedback from Static 
Analysis Enhances 

AI Performance

03
One-Shot Prompting 
Has Limits

04

The pilot confirmed that the quality of AI-refactored output is strongly influenced by the 
quality of the original human-written code. In production-grade systems, where 
established best practices were already in place, AI required minimal guidance to 
improve the code. However, proof-of-concept (PoC) code — often developed quickly 
and without strict standards — required richer, more context-aware prompts to achieve 
meaningful improvements. This demonstrates the importance of applying AI coding 
tools within a structured development process, especially when dealing with less mature 
or experimental codebases.

Model capability matters. The evaluation showed that more advanced large language 
models, such as Qwen Coder 2.5, performed significantly better than simpler 
alternatives. These models were more effective in identifying and addressing critical 
coding issues, due to superior architecture, broader training data, and improved 
contextual reasoning. This highlights the importance of selecting the right model for 
high-assurance software engineering tasks.

One of the most valuable findings was the impact of incorporating static analysis results 
directly into the AI refactoring loop. When outputs from Parasoft Jtest — based on CWE 
guidelines — were used as structured input to Sunshine.Coder, the AI was able to 
generate more precise and relevant fixes. This feedback mechanism was especially 
beneficial for the PoC code, improving its alignment with security and coding standards. 
The result is a compelling case for combining generative AI tools with traditional 
assurance methods to drive higher-quality outcomes.

While simple prompts were sufficient for improving production-grade code, they were 
often inadequate for more complex or inconsistent codebases. The results reinforced 
that a single-pass, one-shot prompting approach has inherent limitations. More robust 
results were achieved through iterative workflows that integrated feedback from 
automated testing tools. This supports the view that AI-assisted programming should be 
treated as a multi-step, feedback-driven process rather than a one-off task.

Across the board, the pilot reinforced a fundamental principle: AI tools are only as 
effective as the engineering workflows around them. The ability of Sunshine.Coder to 
enhance code quality — including addressing CWE-classified security issues — was not 
just a function of the model, but of how prompts were structured, how context was 
provided, and how assurance tools were integrated. With the right setup, GenAI can 
transition from being a productivity booster to a trusted component of secure, 
standards-aligned software development.

Insights/Lessons Learned

Applying AI 
Intelligently Requires 
Engineering Discipline

05



As shown in Figure 3, static analysis using Parasoft Jtest plays a pivotal role at multiple points in the workflow. It first scans the original 
source code to identify weaknesses, then these findings are passed back to the AI system to build context-rich prompts. Sunshine.Coder 
refactors the code accordingly, and Jtest is triggered again to evaluate the AI-generated output. This iterative, feedback-driven process, 
tightly aligned with CWE standards, ensures that security is systematically improved — not assumed.

By embedding generative AI into a secure, test-validated DevSecOps 
pipeline, this pilot demonstrates a scalable model for responsible and 
standards-aligned GenAI development. It’s not just about using AI — it’s 
about using it intelligently, iteratively, and with assurance at every step.
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