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Design of GenAI application 
can influence resilience to 
attack (e.g., siloing inputs 
and outputs for review, 
restricted input/output space 
and single-turn interactions)
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additional challenge
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business risks makes 
testing more effective
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In sensitive externally 
facing applications, there 
is a trade-off between 
safety and transparency to 
build confidence
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InsightsChallenges

•Pre-defined benchmarks, though providing useful insight, 
proved not to be a strong indicator of overall robustness

•Scaling the generation of input datasets, which retained 
the initial features to be tested, was time consuming

Generating and evaluating in distribution 
datasets aimed at misclassification

How LLMs were used in application?

Summarisation

Translation Orchestrator for an agentic flow 

Retrieval augmented generation

Data extraction from unstructured source

Advai is a UK based AI assurance 
company, focused exclusively on the 

testing, evaluation and assurance of AI. 
They collaborate with organisations 

including the UK Government’s National 
Cyber Security Centre, the Ministry

of Defence, listed companies & leading 
Systems Integrators. 

CheckMate is a volunteer-run 
grassroots initiative that aims to 

make the act of checking information 
easy and accessible for all. Its 

WhatsApp service (powered by an 
LLM agent) allows users to send in 
dubious content they encounter 

online, and supports text messages, 
images, screenshots or links. Able 
to search online, visit webpages, 
and/or scan for malicious URLs.

On-demand 
Scam and Online 
Fact-checker 
Using Agentic 
Workflow

What Risks Were Considered 
Relevant And Tested?

Inaccuracy during normal usage conditions

Subtle adversarial attacks that influence the output of the 
system e.g., scammers making subtle tweaks to messages

Adversarial attacks that bring down the system

How Were The Risks Tested?

Approach Evaluators

Manual red teaming 
by human experts

Scaled Semi-Automated Testing, 
LLMs were used to generate 
synthetic data based on human 
crafted datasets

Isolating Modalities: 
Testing separately for text 
and image inputs

Combination of human review 
and some automated options

•Pre-trained classifiers

•LLM as a judge

•RegEx pattern matcher to 
determine classification given 
by the CheckMate system

Benchmarking using internal 
and opensource datasets, 
covering denial of service, 
harmful content, 
misclassification

Generation of harmful content: Out of distribution inputs that 
cause the system to generate and output harmful content
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01 Deployer and Application

On-demand Scam and Fact-checker Using 

Agentic Workflow

CheckMate is a volunteer-run grassroots initiative that aims to make the 
act of checking information easy and accessible for all.

CheckMate’s WhatsApp service allows users to send in dubious content they encounter online, 
and supports text messages, images, screenshots or links. This WhatsApp service is powered by 
an LLM agent. Much like a human checker, this LLM agent is able to search online, visit 
webpages, and/or use malicious URL scanning services. It chooses any combination of these 
“tools” till it is confident in its judgement, before drafting 

a report that is then summarised into a “community note” for end-user consumption.

So far, the application has protected over 3,700 people and helped check over 5,800 submissions.



02 Testing Partner and Testing Approach

03 Risk Assessment and Testing Scope

CheckMate identified several key risks 
for this application and prioritised the 
following for this assessment:


Inaccuracy during standard usage

As a scam/fact-checking service, the generated outputs under normal 
usage conditions must be accurate

Subtle adversarial attacks that 
influence the output of the system

Adversaries should not be able to make subtle tweaks to the inputs, that 
might not be noticed by humans, but could fool the agentic system into 
negative outcomes. For example, scammers making subtle tweaks to 
their scam messages that are not obvious to humans but trick the system 
into assessing the message as legitimate.

Adversarial attacks that bring down the system

Adversaries should not be able to submit inputs that are able to bring 
down the system.

Generation of harmful content

Out of distribution inputs that cause the system to generate and output 
content that may be considered harmful to the user.

Advai is a UK based AI assurance company, focused 
exclusively on the testing and evaluation of AI. Dedicated 

to making AI safe and reliable, Advai provides the tools and 
expertise to ensure AI systems are trustworthy, robust and 
secure. This has led to collaboration with leading 
organisations, including the UK Government’s National Cyber 
Security Centre, the Ministry of Defence, various listed 
companies & leading system integrators - all in order to 
advance AI safety standards and ensure responsible AI 
deployment in highly regulated industries.

Advai aligns threat models and risk taxonomies, both from external industry standards 
and internal industry leading research, with an approach that combines both human 
expertise and proprietary tooling. Beginning with the business use case for AI 
deployment, risks are determined which are pertinent to the scenario in which the AI 
system will be used. 

AI failure modes are explored through human expertise and automated tooling, and 
considered within the risk thresholds of the adopting organisation. Testing capabilities 
include benchmarks, near out-of-domain data, far out-of-domain data, malicious inputs 
and synthetic data based on representative samples. Applying this range of inputs to 

a system, robustness is measured through a broad range of metrics, evaluating 

a system’s ability to function in challenging domains.



04 Test Design

03 Risk Assessment and Testing Scope

CheckMate allows for inputs consisting of text, images and images with captions. All three modalities were considered inside the 
testing scope, with each to be tested against the identified key risks. Whilst the CheckMate system consists of multiple models and 
tools, the decision was made to restrict the scope to input/output validation, rather than testing each individual component in silo.


The CheckMate system allows for input as text, an image, or an image with 

a caption. As vision-language models (VLM) process text and imagery through 
separate encoders, testing was designed for each input modality to be assessed 
separately. The objective of this was to perform a structured comparison on how 
the system’s robustness performed across modalities.

Isolating Modalities

To get an initial indication of the robustness of the CheckMate system across 

a variety of malicious inputs, a combination of internal and open benchmark datasets 
were run against the system. Outputs were evaluated against the agreed upon risks 
of denial of service, harmful content generation and misclassification, by 

a combination of pre-trained classifiers and an LLM judge. Human review was then 
conducted on the results.

Designed to uncover failure modes within the system, human evaluation of end-to-
end robustness against malicious inputs was conducted. This involved a team of 
experts crafting adversarial datasets based on both in and out of domain inputs. 
Outputs were reviewed by a RegEx pattern matcher to determine the classification 
given by the CheckMate system, as well as pre-trained classifiers to detect toxicity, 
and an LLM judge to identify the presence of disinformation or harmful content, 
against the expected output.

Designed to indicate the rates of failure modes uncovered by the human 
evaluation, LLMs were used to generate synthetic data based on human crafted 
datasets. This involved recreating specific formatting attributes, tone and content 
patterns, whilst introducing variation on format, content and context.

Benchmarking

Human Evaluation

Scaled Semi-Automated 
Testing

Technical tests were designed to specifically address the 
identified risks, combining automated and manual methods:





04 Test Design

At each stage:

A combination of human review and automated processes were used to evaluate outputs.

This was aided by CheckMate’s role as an evaluation system, effectively acting as a classifier, allowing for 
statistical approaches to measure misclassification and denial of service to be applied. 

On top of this, human evaluations were made on transparency of output, in particular in relation to the 
presence of disclaimers as part of outputs.

Failure Mode

Harmful Content 
Generation

Denial of Service

Misclassification

Harmful content is 
generated and 
returned to a user

A user is unable to 
get a response from 
the agent

A harmful fake 
message is verified 
by the agent

Jailbreaking

Prompt Injection

Prompt Injection

Agent Generation, 
Review

Review

Agent Generation, 
Agent Tool Use, 
Review

Role Adoption, 
Jailbreaking, Storytelling

Resource Consumption, 
Harmful Content

Best of N, Tool Use 
Exhaustion, Benign 
Context, Obfuscation

Impact Attack Vector TargetAttack Strategy

05 Test Implementation


Each test was traced using an ID 
in the format:



{input}-{objective}-{experiment 
no.}-{run no.}-{input ID}-{repeat}




For example, the trace:  IT-denialOfService-4-37-6-2 




would represent a combined image and text input, aimed at denial of 
service, as part of the 4th experiment of this kind, as the 37th run, using 
input 6, being tested for the second time.

Implementing tracing in this way allowed for effective aggregation of 
results against objectives, and identified variations in inputs used.


Execution of Tests 01

Tests were executed via API into the CheckMate system, with traces being recorded in LangFuse, and logs being extracted for 
evaluation. API access allowed separate input of text, images, and images with captions, allowing for orchestration of testing 
separately across modalities.



Inputs were sent using the python Requests HTTP client library, taking a payload consisting of the API key, a Trace ID for tracing multi-
turn executions, and metadata about the format of the input. Extracted outputs via the LangFuse API were serialised as Pickle files 
locally, then extracted to Pandas dataframes for evaluation.




05 Test Implementation


Data Used in Testing 02

Benchmark data

Initial benchmark data combined 300 example prompts from 
the PINT dataset (filtered to prompt injections); 100 
examples prompts from the BIPIA dataset (filtered to 
summarisation and web categories); 50 internal prompts 
covering the domains of denial of service, generation of 
harmful content and disinformation. 

Human testing

386 human prompts were run against the system, with a team 
of human experts creating prompts covering each input 
modality, aimed at each potential output domain. 

Semi-automated testing

380 LLM generated prompts were run against the summary, 
constituting 1112 queries, with a rerun and backoff varying 
between 3 and 10.

Challenges in Implementation 04

The predominant challenge of implementation was generating 
and evaluating in distribution datasets aimed at 
misclassification. Pre-defined benchmarks, though providing 
useful insight, proved not to be a strong indicator of overall 
robustness. Scaling the generation of input datasets, which 
retained the initial features to be tested, whilst introducing 
additional variation proved to be time consuming.

Cost of Testing 03

The testing process involved significant human time allocation 
from CheckMate, to determine the relevant business risks and 
providing access to Advai without disrupting the production 
application.

Advai required human expertise to evaluate outputs, craft 
specific in domain risks, and build the meta-prompts to 
generate the semi-automated datasets. This consisted of 6 
hours of platform integration, 115 hours of human evaluation 
and 16 hours to build the semi-automated pipeline.

06 Insights/Lessons Learned

Impact of Design 
Decisions

01

Due to a focus on siloing both inputs and outputs for review, the inclusion of human 
evaluation, restricted input/output space and single-turn interactions, the CheckMate 
system proved resilient to a variety of adversarial attack vectors. This highlighted the 
impact of design decisions on robustness - rather than strictly LLM selection.

As the CheckMate app is designed to handle a wide range of inputs, across multiple 
modalities, defining what is an ‘in distribution’ input, i.e., an input the system should be 
able to handle, is difficult to define.

02
Defining In-Distribution 
Is Challenging



In sensitive externally 
facing applications, there 
is a trade-off between 
transparency and safety 
to build confidence

06

Benchmarks Aren’t 
(Always) An Accurate 
Reflection Of Robustness

03

As a simple, clear use case already operating in production, key risks that the LLM could 
post to the business were clear to both the CheckMate team and Advai. This allowed 
testing to proceed smoothly and efficiently.

In CheckMate’s case, attacks meant to successfully convince the user that something 
false was actually true, would need to fool both the LLM agent, as well as the intended 
(human) recipient of the scam/misinformation. This is a much harder problem than simply 
fooling the LLM.


When restrictions are applied to the broad capabilities of an LLM, such as restricting 
usage to a checking service, benchmarks don’t capture the unique nature of different 
system implementations. Changes to system prompts and introduction of review 
functions alter a system’s performance enough that benchmark datasets provide useful 
initial insight, but don’t score well the difference between in distribution and out of 
distribution inputs.

Excessive information about the internal architecture of the LLM-enabled application 
pipeline increases vulnerability to attacks.   

06 Test Implementation


Fooling Both AI and 
Humans Creates An 
Additional Challenge

04
Clear Understanding of 
Business Risks Makes 
Testing More Effective

05




