

Table of Contents

Title Page

Executive Summary 00

Chapter 1 - Introduction 01

1.1	Rationale 01

1.2	Target outcomes 02

1.3	Ground rules 02

Chapter 2 - Pilot participants and use cases 03

2.1	Participant profile 03

2.2	Use cases 04

2.3	Patterns of LLM usage 05

Chapter 3 - Risk Assessment and Test Design 06

3.1	Risk Assessment 06

3.2	Metrics 07

3.3	Testing approach: Test datasets 07

3.4	Testing approach: Evaluators 08-09

Chapter 4 - Test Implementation 10

4.1	Test Environment 10

4.2	Test data and effort 10

4.3	Implementation challenges 10

Chapter 5 - Lessons learnt 11

5.1	Test what matters 11-12

5.2	Don’t expect test data to be fit for purpose 13

 Guest Blog: Learning from self-driving cars: Simulation Testing 14

 Guest Blog: Synthetic Data for Adversarial Testing 15

5.3	Look under the hood 16

5.4	Use LLMs as judges, but with skill and caution 17

 Guest Blog: LLM-as-a-judge: Pros and Cons 18

5.5	Keep your human SMEs close! 19

 Guest Blog: LLMs can’t read your mind 20

Chapter 6 - What’s next? 21-22

Executive Summary
From Model Safety to Application Reliability

As Generative AI (“GenAI”) transitions
from personal productivity tools and
consumer-facing chatbots into real-world
environments like hospitals, airports and
banks, it faces a higher bar on quality and
confidence.

01 Risk assessments depend heavily on the context of the use case –
e.g., lower tolerance for error in a clinical application than a
customer service chatbot.

02 Given the higher complexity involved in integrating foundation
models with existing data sources, processes and systems, there
are more potential points of failure.

However, much of the current work around AI testing focuses on the safety of foundation models, rather than the reliability of end-
to-end applications. The Global AI Assurance Pilot was an attempt to address this gap: not through academic research, but by
building upon real-life experiences of practitioners around the world.

Learning by doing.

The pilot matched 17 deployers of GenAI applications with 16 specialist AI testing firms. These organisations were based in
Singapore and 8 other jurisdictions, providing a significant international lens. The primary objective was to surface and codify
emerging norms in technical testing of GenAI applications. The 17 applications were aimed at a mix of internal (12) and external (5)
users. There was a human in the loop in most (12) cases. 10 industries were represented, including banking, healthcare and
technology. Large Language Models (LLMs) were utilised in a variety of ways in these applications: summarisation, retrieval
augmented generation, data extraction, chatbots, classification, translation, agentic workflows and code generation.

The “what” and “how” of testing GenAI applications

Deciding what to test (or not!)
was a non-trivial exercise.  
The 3 risks that interested most
deployers were accuracy and
robustness, use case specific
regulation and compliance
requirements, and content safety

Off-the-shelf LLM benchmark test
datasets were rarely used to
conduct the tests, except to test
content safety in external facing
applications. Use-case specific test
data sets were used most often,
though many decided to
supplement these with adversarial
red-teaming or simulation testing
for edge-case scenarios.

The 2 most popular ways to
evaluate test results were human
review and LLMs-as-judges. Many
participants highlighted that while
the latter are versatile, scalable
and accessible, they carry risks and
require mitigating controls.

00 Testing Real-World Generative AI systems

Getting GenAI testing right: 4 practical recommendations

01 Test what matters

Your context will determine what risks you should (or
should not!) care about. Spend time upfront to design
effective tests for those.

02 Don’t expect test data to be fit for purpose

No one has the “right” test dataset to hand. Human and
AI effort is needed to generate realistic, adversarial and
edge case test data.

03 Look under the hood

Testing just the outputs may not be enough. Interim
touchpoints in the application pipeline can help with
debugging and redundancy. With agentic AI
applications, this becomes a necessity.

04 Use LLMs as judges, but with skill and caution

Human-only evaluations will not scale. LLMs-as-judges
are necessary but require careful design and human
calibration. Cheaper, faster and simpler alternatives
exist, in some situations.

There was also an overwhelming reinforcement of the critical role of human experts, at every stage of the GenAI testing lifecycle.

What comes next?

Pilot participants suggested 4 areas for future collaboration:

Building awareness
and sharing emerging
best practices around
GenAI testing

Moving towards
industry standards
around “what to test”
and “how to test”

Creating an
accreditation
framework for testing

Supporting greater
automation for
technical testing

The launch of IMDA Starter Kit – for consultation – is an initial step to address some of these requests.

The journey towards making GenAI applications reliable in real-world settings has just started. IMDA and AIVF look
forward to continued collaboration with AI builders, deployers and testers, and policy makers, on this important
initiative

00 Testing Real-World Generative AI systems

01 Testing Real-World Generative AI systems

�� Introduction
The AI Verify Foundation (AIVF) is a non-profit subsidiary of Singapore’s Infocomm Media Development Authority (IMDA). Its
mission is to support the creation of a trusted AI ecosystem through access to reliable AI testing capabilities.   

Together with its parent IMDA, the AIVF launched the Global AI Assurance Pilot in February 2025, to help codify emerging norms
and best practices around technical testing of Generative AI (“GenAI”) applications. Existing, real-world GenAI applications were
put to the test, pairing organisations that had deployed them with specialist AI testing firms.

1.1 Rationale

The pilot was motivated by three core beliefs:

001

GenAI can have a massive,
positive impact on our society
and economy – if it is adopted
at scale in public and private
sector organisations.

002

Such “real-world” adoption
requires GenAI applications to
operate at a much higher level
of quality and reliability (vs. the
general-purpose models that
underpin them).

003

The extensive work underway on
AI model safety and capability is
necessary, but not sufficient, to
help meet that higher bar.

Large Language Models (LLMs) and their multi-modal equivalents are being adopted extensively as personal productivity tools.
However, to have real transformational impact, GenAI must get embedded in the public and private sector organisations that drive
critical parts of the economy, such as health, finance, utilities and government services.

Using GenAI in such real-world situations,
at scale, raises the quality and reliability
bar significantly. Two factors account for
this difference: Context and Complexity.

Most academic and technology industry efforts
around AI testing have tended to focus on Model
safety and alignment. A shift is required – from the
Safety of Foundation Models to the Reliability of
the end-to-end Systems or Applications in which
they are embedded.

Models E2E Systems

AI Safety AI Reliability

01 Context

Unlike a general purpose LLM chatbot application or personal
productivity tool, a GenAI-enabled application must operate in the
specific context of a use case, organisation, industry and/or socio-
cultural expectations. For example, a GenAI application in a healthcare
setting may have very low levels of tolerance for “hallucination”
compared to one used as an internal employee helpdesk.

02 Complexity

Real-life GenAI applications are also likely to have more layers of
complexity. They may use LLMs in conjunction with existing data
sources, processes and systems, creating additional potential points of
failure beyond the LLM.

The pilot was an attempt to start enabling that shift – not through new academic research or technical development, but
through real-world experience.

02 Testing Real-World Generative AI systems

1.2	Target outcomes

The pilot was launched with 3 target outcomes

Testing norms and
practices

� Inputs into future standards
for Technical Testing of Gen
AI applications

Foundations for a viable
assurance market

� Greater awareness of the
ways in which external
assurance can build trust in
GenAI applications and
enable adoption at scale�

� A foundation for potential
accreditation programmes in
the future

AI testing tool roadmaps

� Inputs into the product
roadmaps for open source
and proprietary AI testing
softwar�

� Specific focus areas for
AIVF’s Moonshot platform

1.3	Ground rules

The pilot had three ground rules:

01

The application must involve the
use of at least one LLM or multi-
modal model

02

The application must be live or
intended to go-live (not Proofs-
of-Concept)

03

The exercise must focus on
technical testing (not process
compliance)

04

Testing should be conducted on the GenAI application
(not just the underlying foundation model)

05

Testing must be conducted by an external party – i.e.,
an organisation different from the one that has built
and/or deployed the application.

IMDA and AIVF sought no access to the actual results of the technical tests. The focus was on understanding how the deployer
saw the associated risks, how technical tests were designed and implemented to assess them, and the lessons learnt from the
exercise.

03 Testing Real-World Generative AI systems

�� Pilot participants and use cases
33 organisations from ~10 geographies and industries participated in the pilot. The use cases spanned a broad range of functional
areas and LLM usage archetypes. Almost all were already in production, though mostly with humans in the loop.

2.1	Participant profile

GenAI applications from 17 organisations were put to the test during the pilot

Healthcare/ Pharma Banking, Insurance, Fintech

European Insurer

IT/ Software Others

High-tech Manufacturer

Each of these organisations was paired with 1 (or 2) of 16 specialist firms that provide software and/or services to test GenAI
applications. In some cases, the “pairing” was done by the participants themselves, whereas in others, AIVF helped match
deployers with testers.

16
Leading AI testing
specialists

About half of these 33 organisations were based in Singapore. The remaining came from 8 other jurisdictions– Canada, France,
Germany, Hong Kong, Switzerland, Taiwan, UK, US.

1Applications were deployed by the named organisations- except in the case of MIND Interview, Tookitaki, Unique, ultra mAInds and Fourtitude . All of these were intended to be
deployed at their B2B clients.

2 In two cases, more than one testing firm was involved (Changi Airport with PRISM Eval and Guardrails, and ultra mAInds with Aiquris and AIDX). One testing firm-Ragas-provided
support and expert advice without directly partnering with a deployer

04 Testing Real-World Generative AI systems

2.2	Use cases Background

97

1
Is The Application Live?

In production

In Beta and/or with 
selected users

In testing

16 of the 17 use cases were already live in production.

7 of them were in beta or/or rolled out to a limited group of users.

10

5

2 Who Are The Target
Users?

Internal (all staff)

Internal (specialist)

External

A majority were targeted at specialist users inside an organisation (e.g.,
software engineers at NCS). 5 were customer/ citizen-facing.

5

12

Is A Human In The Loop?

Yes

No

A human was “in the loop” in more than 2/3rd of the cases. Even in the
remaining 5, there was significant human involvement outside the
immediate workflow of the application.

Full list of use cases

Tester(s) Deployer Use case

1 Advai Checkmate On-demand Scam and Online Fact-checker

2 AIDX Fourtitude Customer Service Chatbot (“Assure.ai”) for publicsector and utility clients

3 AIDX Synapxe HealthHub AI Conversational Assistant

4 AIDX/Aiquris ultra mAInds No-code AI-powered Retrieval Augmented Generation platform for Enterprise search and data connectivity

5 Fairly MIND Interview AI-enabled Candidate Screening and Evaluation tool

6
Guardrails

PRISM Eval

CAG AskMax Virtual Concierge Chatbot

7 Knovel HTX Productivity Co-pilot

8 LatticeFlow Confidential Investment Insights for Relationship Managers

9 Parasoft NCS AI-enabled Coding Assistant for refactoring code

10 PwC SCB Client Engagement Email Generator for Wealth Management Relationship Managers

11 PwC UOB Internal Q&A Chatbot

12 Quantpi Unique Investment Research Assistant

13 Resaro MSD Confidential

14 Resaro Tookitaki FinMate Anti-Money Laundering Assistant

15 Softserve CGH Medical Reports Summarisation,

16 Verify AI Confidential Public Road Safety Chatbot

17 Vulcan
High-tech
Manufacturer

Multi-lingual Internal Knowledge Bot

05 Testing Real-World Generative AI systems

2.3	Patterns of LLM usage

Across the 17 applications, LLMs3 were
used in diverse ways. 

The top 3 usage patterns were
Summarisation, Retrieval Augmented
Generation and Data Extraction from
unstructured sources. These patterns
align with the focus of many of these
applications on staff productivity
improvement.  

LLMs were also used to power multi-
turn chatbots, and to help translate
between languages. Relatively few used
LLMs as part of agentic workflows – yet.

How are LLMs used in the application?

16

12

08

04

00

15

Summarisation

13

Retrieval Augmented Generation - RAG

12

Data extraction from unstructured sources

10

Multi-turn chatbot

8

Classification or Recommendation

6

Translation

3

Orchestrator for an agentic flow

2

Drafting email

2

Multimodal (video/ audio to text or vice versa)

1

Code re-factoring

The table below maps each of the 17 applications to the different LLM usage modalities:

Table - How Are LLMs Used in the Applications?			

Tester Depoyer SUM TRA DAT CLA MUL RAG CHT COD AGE EML

Advai Checkmate

AIDX Fourtitude

AIDX Synapxe

AIDX/Aiquris ultra mAInds

Fairly Mind Interview

Guardrails

PRISM Eval CAG

Knovel HTX

LatticeFlow European FI

Parasoft NCS

PwC SCB

PwC UOB

Quantpi Unique

Resaro MSD

Resaro Tookitaki

Softserve CGH

Verify AI Confidential

Vulcan High-tech
Manufacturer

Legend

SUM Summarisation TRA Translation DAT Data extraction from unstructured sources MUL Multimodal (video/ audio to text or Vice versa) RAG Retrieval Augmented Generation

CHT Multi-turn chatbot CLA Classification or Recommendation COD Code Refactoring AGE Code Refactoring EML Drafing email

3 In a couple of cases, multi-modal models were also used

06 Testing Real-World Generative AI systems

3. Risk Assessment and Test Design

There are 4 key choices to be made when designing tests for a Generative AI application:

Risks that matter the most
for the application

Metrics to help assess the
prioritised risks in a
quantifiable manner

Dataset provided as input
to the application

Evaluator to assess the
output from the application

3.1	Risk Assessment

At the outset, each deployer defined the risks that mattered most tothem. A subset was selected for testing during the pilot timelines.

What risks were prioritised and tested during pilot?
(number of use cases)

20

15

10

05

00

2

2
1

3
2

3

1

1

15

In-accuracy, incl (lack of) robustness & completeness

9

Breach of Use-case specific compliance or regulation

9

Content safety

5

Reputation risk

5

Unfair bias

3

Security

3

Inappropriate data disclosure

1

Inadequate User Trans-parency

Risks tested during pilot

High priority but not tested during pilot

In line with the focus on summarisation, RAG and
data extraction as the top LLM use patterns,
deployers saw the highest risk in outputs that
were inaccurate, incomplete or insufficiently
robust. 

With many use cases in regulated industries, the
risk of not meeting existing, non-AI-specific
regulations or internal compliance requirements
came next. Content safety was also considered
important, particularly for applications facing off
to external users.

The following examples illustrate how the specific context of individual use cases led to the risk prioritisation by the deployers.

Deployer Use case Example of prioritised risk

Checkmate On-demand Scam and Online Fact-checker
Malicious attackers seeking to undermine its effectiveness - e.g., falsely
labelling fraudulent messages as authentic - or availability - e.g., denial of
service through prompt injection.

Fourtitude
Customer Service Chatbot (“Assure.ai”) for public
sector and utility clients in Malaysia

Content that potentially offends Malaysian religious, cultural and racial
sensitivities

Synapxe HealthHub AI Conversational Assistant
Content that could pose a risk to an individual's wellbeing - e.g., mental
health, healthcare habits and alcohol consumption

MIND Interview AI-enabled Candidate Screening and Evaluation tool
Unfair bias, which is a key consideration for recruitment-related laws in
many jurisdictions

NCS AI-enabled Coding Assistant for refactoring code Poor quality and/or insecure refactored code

Standard Chartered
Client Engagement Email Generator for Wealth
Management Relationship Managers

Non-adherence to relevant regulation & internal compliance requirements
around provision of investment advice to clients

ChangiGeneral Hospital Medical Report Summarisation Inaccurate fact extraction and/or surveillance recommendations for individual patients

07 Testing Real-World Generative AI systems

3.2	Metrics

Once the priority risks have been identified, appropriate metrics need to be defined to quantify the results of the testing.

For example:

Deployer Prioritised risk Metric(s) chosen

MIND Interview Unfair bias Impact Ratios by sex, race, and sex + race

Standard Chartered AccuracyRobustness
Hallucination and Contradiction rate (Accuracy)

Cosine similarity of generated drafts with the same inputs (Robustness)

Tookitaki Accuracy
Presence and correctness of key entities (amounts, dates, names - post-masking) and critical
instructions in Narration generated by assistant (Precision/ Recall/ Faithfulness)

Synapxe Unsafe content Point scale to judge how well the Synapxe/ Health Hub chatbot was able to block out-of-policy requests

Changi Airport False refusal % of refused requests subsequently found to be within application’s mandate and RAG context

Unique Accuracy/ Irrelevance Word Overlap Rate, Mean Reciprocal Rank, Lenient Retrieval Accuracy to assess Search layer

3.3	Testing approach: Test datasets

There are 4 alternatives
when it comes to sourcing or
creating the datasets needed
to test the GenAI
application. Testers in the
pilot used all four.

How did they conduct the tests?
(Number of Use Case)

00 05 10

Simulation testing (eg for edge cases) 10

Use-case specific test data 9

Red-teaming (adversarial) 7

Classification or Recommendation 5

01 Benchmarking

Definition

Benchmarking involves presenting the application with a standardised set of
task prompts and then comparing the generated responses against pre-
defined answers or evaluation criteria

Was used in instances where the application was to be tested for
generalisable risks such as content toxicity, data disclosure or security.

Was not used when application was to be tested for context-specific
risks, such as accuracy and completeness of answers sourced from the
deployer’s internal knowledge base

Example

Parasoft: Testing of NCS’ AI-refactored code
against its standard security and code
compliance requirements.

AIDX: Testing of Synapxe’s and ultra mAInds’
applications vs. generic content safety
benchmarks.

08 Testing Real-World Generative AI systems

02 (Adversarial) Red-Teaming

Definition

Red-teaming is the practice of probing applications for system failures or
risks such as content safety or sensitive data leakage. Can be done
manually, or automated using another model.

Was used when dynamic testing - e.g. through creative prompt
strategies, multi-turn conversations - was required, compared to static/
structured benchmarks

Was used not just in external-facing applications, but also where the
potential harm from malicious internal actors was significant

Example

PRISM Eval: Use of proprietary Behavioural
Elicitation Tool to map the responses of Changi
Airport’s Virtual Assistant across 6 content
safety areas

Vulcan: Attempts to make the knowledge bot at
high-tech manufacturer disclose confidential IP
or the meta-prompts underpinning the
application

03 Use-case specific test data

Definition

Use-case-specific test datasets are static and structured like benchmarks but
relate to only the specific application being tested. Such datasets can be
historical, sourced from production runs or synthetically generated

Default option in most pilot use cases

Conceptually familiar to business and data science teams

Limited availability of historical data in most pilot use cases, but several
used “realistic” synthetic data

Example

Softserve: use of historical data to test Changi
General Hospital’s Medical Report
Summarisation application.

Verify AI: use of an LLM to generate
representative questions from the original
document used in the Road Safety Chatbot
RAG application

04 Simulation tests (non-adversarial)

Definition

Simulation testing involves increasing test coverage, by simulating long tail
or edge case scenarios and generating synthetic data corresponding to
them. Also referred to as “stress testing”

Was used where the application’s ability to respond to out-of-distribution
test cases was to be tested

Required combination of human creativity - to come up with relevant
scenarios - and automation – to generate synthetic test data at scale

Example

Guardrails AI: Large-scale simulation testing on
Changi Airport’s Virtual Assistant to generate
realistic, diverse scenarios that reveal critical
failure modes around hallucination, toxic
content and over-refusal

Resaro: Series of perturbation techniques - e.g.,
missing value imputation, error injection,
numeric and logical errors - applied to 100 “in
distribution” queries from deployer Tookitaki

3.4	Testing approach: Evaluators

Evaluators are tools or methods used to apply a selected metric to the application’s output and generate a score or label. 

Human experts are often considered to be the “gold standard” when it comes to assessing whether the output from an
application meets defined criteria. However, by definition, this approach is not suited for automated assessments and thus, not
scalable. 

The alternative is to use rule-based logic, traditional statistical measures such as semantic similarity, an LLM as a judge, or another
smaller model. Typically, the more probabilistic the technique, the greater the need for careful human review and calibration of the
test results.

09 Testing Real-World Generative AI systems

How did the pilot participants evaluate test results? (Number of Use Cases)

Tester Depoyer
Human
judgement or
review Rule-based logic

Surface-level/
Semantic
metrics LLM-as-judge

Non-LLM model
as judge

Advai Checkmate

AIDX Fourtitude

AIDX Synapxe

AIDX/Aiquris ultra mAInds

Fairly Mind Interview

Guardrails

PRISM Eval

CAG

Knovel HTX

LatticeFlow European FI

Parasoft NCS

PwC SCB

PwC MNC Bank

Quantpi Unique

Resaro MSD

Resaro Tookitaki *
Softserve CGH *
Verify AI Insurer ^
Vulcan

High-tech
Manufacturer

Total 14 9 5 13 4

Legend * LLM used to extract facts as part of eval

^ Statistical models used to check effectiveness of LLM-as-judge

01

Most testers in the pilot (14)
used LLMs as judges, due to
their versatility and accessibility

02

Human reviewers were used
often (13) to evaluate bespoke,
small-scale tests and to calibrate
automated evaluation scores
particularly when using LLM-as-
a-judge.

03

Rule-based logic was popular
(10) wherever LLMs were being
used in data extraction

04

Smaller models – as alternatives to LLMs – were used
less frequently (4) in the pilot, but are more likely when
testing at scale, due to their simplicity and cost
effectiveness

05

Statistical measures like BLEU were less popular

10 Testing Real-World Generative AI systems

4. Test Implementation

4.1	Test Environment

Most (10) testers used their own proprietary testing platform to execute the tests. Installing these within the deployer’s network
was difficult within the short timeframe of the pilot. However, this option was still feasible if

The GenAI application allowed external access via API, and/or

Relevant input/ output/ trace data could be shared externally by deployer with appropriate anonymising/ safeguards

In the remaining instances, a mix of bespoke testing scripts and tester’s existing testing libraries were used. In at least two cases,
the tester was onboarded by the deployer into a staging environment for the testing exercise.

4.2	Test data and effort

Given the time spent upfront to define “what to test” and “how to test”, limited time was available for actual test execution. As a
result, test sizes were relatively small. Most testers used a few hundred test cases, though two (PRISM Eval and Verify AI) went into
tens or even hundreds of thousands.

The effort needed from the deployer and tester teams varied. Many required a total of 50-100 hours’ worth of effort over 2-4
weeks, though a few required hundreds. Infrastructure and LLM costs were inconsistently shared, but do not appear to have been
significant in the context of this limited pilot period.

4.3	Implementation challenges

The difficulty of finding, or
generating, test data that
is realistic, able to cover
edge cases and anticipate
adversarial attacks, was
seen as a common
challenge by most pilot
participants.

Implementation Challenges During Testing (Number of Use Cases)

00 05 10 15

Finding/ generating relevant test data 13

API access/ throughput/ latency/ performance 5

Confidentiality, Privacy, Security constraints 5

Lack of granular tracing inside app pipeline 4

Access needed to SMEs 4

Repeatability of test results 3

Beyond that, testers also found the following aspects challenging:

Confidentiality, Security and Privacy constraints: impacted access to relevant test data, system prompts and even the actual application.
API Access, Throughput, Latency and Performance.
Lack of granular tracing access inside the application pipeline: resulting in limited ability to test and debug at interim points.
High demand for access to human subject matter experts: e.g., to annotate “ground truth” or calibrate results of automated testing.
Lack of consistency: Differences in response from the same application, to the same input, making it difficult to create consistent test results.

Some testers were also concerned about not sharing too much publicly on their proprietary testing approach (particularly for
adversarial benchmarking and red-teaming efforts) or on the internal architecture of the applications being tested. These concerns
have been incorporated when drafting the report.

11 Testing Real-World Generative AI systems

5. Lessons learnt

Observing the 17 sets of pilot participants as they went about testing the applications - prioritising risks, defining test metrics,
coming up with suitable test datasets and evaluators, and executing the tests in constrained conditions – provided invaluable
insights. These have been distilled into 4 practical recommendations.

001

Test what matters
Your context will determine what risks you should (and
shouldn’t!) care about. Spend time upfront to design
effective tests for those.

002

Don’t expect test data to be fit for purpose
No one has the “right” test dataset to hand. Human and
AI effort is needed to generate realistic, adversarial and
edge case test data.

003

Look under the hood
Testing just the outputs may not be enough. Interim
touchpoints in the application pipeline can help with
debugging and increase confidence.

004

Use LLMs as judges, but with skill and
caution
Human-only evals don’t scale. LLMs-as- judges are often
necessary, but need careful design and human
calibration. Cheaper, faster alternatives exist in some
situations

5.1	Test what matters

In theory, it should be easy to determine “what to test” in a GenAI application. In practice, three factors made it challenging for
the pilot participants.

01 Broad risk surface

Extensive, rapidly evolving and
often daunting list of risks
associated with GenAI
technologies in public domain.

Difficult for lay persons, or
even technical/ functional
experts, to discern what might
apply to a specific situation

02
Unfamiliar territory for
automation efforts

GenAI use cases often in areas
that have traditionally not seen
attempts at automation

As a result, there are fewer
precedents to call upon, when
defining good and bad
outcomes

03
Non-quantitative nature of
outputs

Specifying “what good looks
like” is subjective and much
harder, when the output is in
free text - e.g., Is this summary
of the source text good
enough?

In comparison, most traditional
models have numeric or
categorical outputs, and suited
for clear-cut assessments

The pilot provided useful tips around the most effective ways of addressing these challenges.

12 Testing Real-World Generative AI systems

01 To narrow down the risk surface, two approaches have been useful

Structured down-selection

Start with a comprehensive GenAI risk assessment
framework - which are often mapped to relevant regulation/
guidelines – and use a structured process to rate the
relative importance of each risk for the specific use cases.
Examples: Aiquris-ultra mAInds, PwC – Standard Chartered
and NCS – Parasoft.

Bottom-up approach

Start with the perspective of what really matters to the
deployer and impacted stakeholders – without referring to
regulatory or compliance frameworks in the first instance.
Examples; AIDX – Fourtitude and Guardrails/ PRISM Eval -
Changi Airport (incidentally, both public-facing customer
chatbots).

Both options can work, sometimes even in conjunction. The former provides more comfort when regulatory compliance is a key
consideration for testing. The latter is often faster and more pragmatic, but could require follow-up to justify decisions.

02 To overcome the lack of precedents to determine good and bad outcomes

Engage early and
extensively with Subject
Matter Experts (SMEs) –
e.g., with a designated
medical practitioner at
Changi General Hospital

Observe outcomes from
historical or live
production experience
where possible – e.g.,
assessing where the end-
user or human in the loop
is ignoring/ over-ruling the
automated output

Conduct simulation
testing to identify
potential failure points in
edge cases – e.g., at
Changi Airport

Leverage the experience
of specialist testers who
have built targeted
benchmarks and red-
teaming techniques for
similar risks

Finally, finding quantitative metrics to assess the qualitative outputs is the area that has seen significant practitioner activity
already. Tap on the experience of specialist testers and major open source LLM app eval projects.

03 To find appropriate quantitative metrics to assess qualitative outputs

Tap on the experience of specialist testers and major open source LLM app eval projects

Make sure that the SME is engaged to shape, review and approve the definition and specific implementation of metrics.  
For example:

When using a standard “faithfulness” metric to assess
LLM application output vs. the context provided to it.
However, it is important to know whether the metric is
measuring the extent to which the output (a) can be
backed up by the context, or (b) is not contradicted by
the context. Needless to say, these metrics measure
very different things!

When using a standard “summarisation quality” metric,
the prompt used to assess the completeness of the
summary may be equally weighted to all the key claims
in the source context. However, in specific situations,
getting a particular piece of information – say, the
number of polyps in a colonoscopy report – might be a
“deal-breaker”, invalidating the summarisation score

13 Testing Real-World Generative AI systems

5.2	Don’t expect test data to be fit for purpose

13 out of the 17 pilot participants identified “finding the right test data” as a major challenge during testing. Expect this challenge
to exist by default in almost every GenAI testing situation. Budget design and engineering effort, and SME engagement, to
address it.

Historical data

At Changi Hospital, historical records were available
for individual patients. However, a degree of fresh
annotation was needed to make that data suitable for
automated testing. Anonymisation efforts may also be
needed sometimes, depending on how the historical
records were stored.

Live production data

Not an option during the pilot but can be a relevant
option after an application has been live for some
time. However, not all applications retain sufficiently
granular traces from the application’s responses in the
production environment. Additional steps around data
anonymisation may also be needed

Adversarial red teaming

At Changi Airport, PRISM Eval helped create
thousands of adversarial attempts by applying their
Behaviour Elicitation Tool to the multi-turn chatbot. At
Fourtitude, AIDX used seed prompts to create
adversarial attacks specific to the Malaysian religious,
racial and cultural context.

Simulation testing

At Changi Airport, Guardrails AI created a series of
target user personas with inputs from business, and
then used a mix of human creativity and LLM-based
automation to generate large volumes of prompts that
could test the chatbot’s likely responses in edge-case
scenarios.

These guest blogs from Guardrails AI and Advai provide practical guidance on red teaming and simulation testing respectively

14 Testing Real-World Generative AI systems

Guest blogs

Learning from self-driving cars: Simulation Testing
By Safeer Mohiuddin, Co-founder, Guardrails AI

Visit San Francisco today, and you can summon a Waymo self-
driving car - no human driver required. Surprisingly, the
fundamental technology enabling these self-driving cars has
changed little in the past decade. What's truly advanced is the
painstaking process of identifying and solving the 'long tail' of
edge cases - those rare but potentially catastrophic scenarios
that could lead to accidents.

This journey mirrors the challenges facing GenAI application
builders today, where the non-deterministic nature of large

language models creates not only safety but reliability
concerns. Effective GenAI systems require both rigorous
testing to identify edge cases during development and
protective guardrails once in production—mirroring the dual
approach that ultimately brought self-driving cars from
concept to reality.

Catching a 0.01% failure with 99.99% confidence requires
testing approximately 10,000 prompts per risk category—
making blind brute-force testing untenable.

Catching a 0.01% failure with 99.99% confidence requires testing approximately 10,000 prompts per risk category—making blind
brute-force testing untenable  

Building on lessons from autonomous vehicles, we've identified four complementary testing approaches that together form a
comprehensive strategy.

Technique Goal Zones Tested Metrics

Static Dataset Precision Known-knowns Pass-rate threshold (“≥ 95% must pass”)

Simulation Testing Coverage Known-unknowns, Edge cases Failure density (“1 critical per 5K runs”)

Human Review Alignment Subjective failures Human-quality mean

Redteaming Resilience Adversarial unknowns Time-to-bypass

Simulation testing stands out in this ladder by generating thousands of diverse test cases at scale—uncovering hallucinations, off-
topic responses, and policy violations that manual test creation would miss.. By mastering edge case generation, we can build AI
systems that handle the unexpected with the same reliability that finally brought self-driving cars safely onto our roads.

15 Testing Real-World Generative AI systems

Guest blogs

Synthetic Data for Adversarial Testing
By David Sully, Co-Founder, Advai

Why do we break things? 

If you ask a toddler, it’s probably just for fun. But as we grow
up, we break things to understand them better. You can only
get so far with theory—eventually, you need to smash
something. 

Whether it’s particles in an accelerator or a car with crash
dummies, breaking things reveals how the universe works or
how a seatbelt can save your life. AI is no different – at some
point, you need to try and understand what will happen when

it experiences things it should not. And for that, you need
Adversarial Testing.Adversarial testing involves feeding in
data designed to break your AI model—until it breaks. The
ease with which it fails helps you understand its true
boundaries: what it handles well, where it struggles, what it
detects reliably, and what it cannot be trusted with.
 

Adversarial testing isn’t just a red-teaming trick—it’s the way
to truly understand AI systems. If you’re not doing it, you
probably don’t know your system as well as you think.

Yes, this is an expert-led craft. But if you're going solo, here’s a crash course:

01 Define Your Use Case and Critical Failure Modes

Where failure is unacceptable? Bias,
hallucinations, being tricked (e.g. prompt
injections), fairness, safety? Prioritise what
matters most.

02 Use Data Mutation Techniques

Modify real data to stretch model limits,  
for example:

Text typos, paraphrases, entity swaps, jailbreaks, injections

Images occlusion, lighting, clutter, adversarial noise

03 Leverage Generative Models

Prompt LLMs or diffusion models to create hard-
edge examples—corner cases, misleading
phrasing, traps your model might fall into.

04 Measure and Benchmark

Numbers mean more in context. Benchmark
different models or versions side-by-side to see
what truly improves.

05 Automate It

You're in AI—automate your adversarial pipeline!

16 Testing Real-World Generative AI systems

5.3	Look under the hood

A key difference between testing an LLM and a GenAI application that uses it is the possibility, and sometimes necessity, of testing
inside the application pipeline. 

For example, consider this grossly simplified representation of a hospital’s application to summarise medical reports, and
recommend personalised surveillance protocols based on established industry guidelines.

The default approach to testing would be to look at the final
output, and assess whether the personalised recommendation
for the patient, as well as the key facts extracted from the
source medical reports, were in line with the “ground truth”
set by a human SME. An LLM-based summarisation quality
score could be used as the comparison metric.

Source Reports Medical Guidelines Key Facts & Recommendations

At Changi General Hospital, this was the starting point. As part of the pilot exercise, tester Softserve introduced two additional
tests:

01 Additional test

Compare the key facts extracted by the LLM from the
source reports with the ground truth version of the
key facts

02 Additional test

Compare the recommendation implied by the key
facts from #1 through the deterministic “decision
tree” underpinning the standard industry guideline

Such an approach can provide several advantages, though it also entails greater effort and is therefore more suited to high-stakes
use cases.

Redundancy in automated evaluations: additional triangulation points for the final output’s summarisation score.

Assistance in debugging application: additional traceability can help understand root causes for poor summarisation scores in the final output

Lower dependence on LLMs as judges: Python scripts rather than LLM-based evaluators used for the incremental two tests.

Another example of the advantages of looking “under the hood” comes from the red teaming exercise conducted by Advai on
Checkmate’s multi-step agentic flow. By knowing the hand-offs at each step of the agentic workflow, the Advai team were able to
refine their adversarial attacks on the application.

What about Agentic AI?

“Looking under the hood” becomes even more important in the
context of real-life applications that use agentic workflows. The
example below – from outside the pilot – illustrates a basic
agentic workflow to conduct fraud investigations, and the granular
testing to which it may lend itself

17 Testing Real-World Generative AI systems

5.4	Use LLMs as judges, but with skill and caution

Using LLMs as judges is unavoidable for evaluation of GenAI applications in many instances. For example, when assessing a
response from a GenAI application on:

01

Nuanced
considerations such as
consistency with
company values

02

Appropriateness from a
racial or religious
sensitivity perspective

03

Quality of language
translation

04

Completeness and
accuracy of
summarisation

In all these examples, it is possible to use a human SME as an alternative. However, this can be costly and difficult to scale even in
pre-production testing. It becomes practically impossible in real-time production environments, unless a decision is taken to
permanently keep a human-in-the-loop.

Of course, using an LLM as judge carries several risks as well. Mitigating them requires:

01
Skilful and careful prompting when
constructing the evaluator

02

Extensive human calibration

03
Ongoing monitoring to ensure
that there are no “silent failures”

04

Concerted effort to explain how they work, and what are
their limitations, to the non-technical stakeholders
accountable for the final application

05

Non-trivial spending on LLM credits or compute capacity

Unsurprisingly, almost every tester in the pilot has used LLMs as judges as part of their evaluator design. The detailed case studies
document the steps they have taken to improve reliability of such automated evaluators. Most of them used extensive human
calibration to mitigate risks, with some using statistical approaches to ensure evaluation robustness.  

Beyond the pilot stage, it is expected that several of them may find cheaper, simpler and more transparent alternatives such as
smaller language models, rule-based logic or some combination to replace or complement LLM-based evaluators.

18 Testing Real-World Generative AI systems

This guest blog from PwC provides a broader introduction to the pros and cons of using LLMs as judges.

Guest blogs

LLM-as-a-judge: Pros and Cons
Powerful advantages in speed, scalability, and consistency, but effectiveness
depends on thoughtful design, human oversight, and awareness of limitations
By Leigh Bates, Partner PwC UK and Global Risk AI Leader

Testing tools built on Large Language Models (LLMs) rely on testing and evaluating many prompt-answer pairs over different risk
metrics, such as accuracy, lack of hallucinations, coverage, robustness as well as adherence to any specific requirements  
(e.g. that an external chatbot shouldn’t make commercial commitments).

Such evaluation can be done
using Natural Language
Processing (NLP) and
statistical techniques as well
as human SME evaluation,
but both pose challenges:

NLP and statistical approaches can act as a good baseline for assessing the
accuracy of LLMs outputs, but they are not flexible and sometimes fail to capture
linguistic nuance

Human SME evaluations are more reliable and can add an important layer of
testing for higher risk use cases. However, obtaining statistically meaningful
results through human assessment is nearly impossible and impractical.

To address this, PwC has developed AI testing toolkits based on an “LLM-as-a-Judge” approach. LaJ typically involve prompting
the judge LLM to evaluate whether a given prompt–response pair from an LLM-based system meets a specific requirement. The
LaJ prompt can be supplemented with ground truth or examples of appropriate outputs.

Using LaJ in assessing LLM systems has benefits, including:

01
Better ability to approximate
human-like judgment vs. NLP
methods, in areas where
evaluation is qualitative (e.g., tone
appropriateness, helpfulness).

02

Speed & cost effectiveness of
executing tests at scale, relative to
human review

03

Not susceptible to fatigue, unlike
human reviewers, which could lead
to fairer and more standardised
evaluations across large datasets.

04

The potential to use the same LaJ beyond initial testing -
in ongoing monitoring. This can create dynamic
performance metrics and associated alerts

05

The potential to extend to Agentic AI system evaluation,
where multiple LLMs with different instructions interact
with each other without human intermediaries

19 Testing Real-World Generative AI systems

Guest blogs

LLM-as-a-judge: Pros and Cons
Continued from previous page

Of course, there are
challenges to consider when
using LaJ for evaluation
testing:

Heavy reliance on effectiveness of the prompt used to guide it. The more
complex the assessment, the more elaborate and specific the prompt will need to
be; this is hard to determine without an element of trial and error.

Lack of transparency in LaJ reasoning, making it difficult to audit decisions or
understand failure modes, especially when evaluating edge cases/ novel inputs

Risk of biased assessments if using the same underlying model or family of
models in the LaJ and the LLM application being tested (however, not observed
in the LLM system assessments we have done so far)

There may be the temptation to rely solely on LaJ outputs due to their convenience. However, it is important to reinforce that
these tools should supplement (not replace) expert human judgment, especially in high-stakes evaluations. Having human experts
test a smaller sample of scenarios to ensure the LaJ is working as intended, and interpret some of the LaJ outcomes, is crucial.

5.5	Keep your human SMEs close!

At every stage of the
technical testing lifecycle,
human SMEs have a critical
role to play.

Narrowing down the risks that genuinely matter in a specific use case

Helping choose or refine the metrics that can best reflect those risks

Annotating test data sets, or creating “seed” scenarios that form the basis for synthetic
test data generation

Reviewing/ refining/ validating automated evaluators

Interpreting test results and deciding on corrective action if any

There is widespread recognition of the theory of involving SMEs from an early stage. Unfortunately, there is inadequate
appreciation of the scale of the demands to be placed on the human experts along the way. Additionally, non-technical users often
lack user-friendly tools to engage throughout this process.

This guest blog from Ragas provides a practical perspective on how to engage human SMEs in a specific step – that of annotating/
calibrating automated evaluators.

20 Testing Real-World Generative AI systems

Guest blogs

LLMs can’t read your mind
By Shahul E.S, Co-Founder, ragas

Many teams underestimate the criticality of human review when setting up automated evaluations. If your goal is to align your AI
system with human expectations, you must first define those expectations clearly. Here’s how you can go about it

Step 01 Define what to measure

Ask: What matters in a good response for your use case? Pick 1–3 dimensions per input–response pair. For example,
response correctness and citation accuracy for a RAG system, or syntactic correctness, runtime success and code
style for a coding agent.

Step 02 Choose metric type

For each dimension, choose a metric that’s both easy to apply and actionable:

Binary (pass/fail): Use when
there’s a clear boundary
between acceptable and
unacceptable. Example: Did the
agent complete the task? Yes or
no.

Numerical (e.g. 0-1): Use when
partial credit makes sense and
you can clearly define what
scores mean. Example: Citation
accuracy of 0.5 = half the
citations were incorrect.

Ranking: Use when outputs are
subjective and comparisons are
easier than absolute judgments.
Example: Summary A is better
than Summary B.

Step 03 Review and evaluate the automated evaluator

Once you are satisfied that you have defined what you
really want to measure and have found a way to
automate the calculation of your preferred metric, the
next step is to assess how well the automated evaluator
is performing, and whether it is aligned to the human
subject matter expert’s views.   

However, in doing so, it is essential to collect
justification alongside it. “Fail” without a reason isn’t
helpful. On the other hand, a good justification can act
as crucial training input for your LLM-as-judge.

Finally, do not under-estimate the power of a good user
interface in making human reviews/ annotations
painless. Looking at data can be tedious, but a user-
friendly “data viewer” can make it less so. Your data
viewer should ideally be: (a) tailored to your use case
(RAG, summarization, agents, etc.); (b) fast to label; and
(c) structured enough to store data and feedback
consistently.

21 Testing Real-World Generative AI systems

6 What’s next?

Pilot participants provided their views on potential areas for future work. 4 themes emerged:

01 Building Awareness and Sharing Best Practices

More training and awareness of the
risks

On the risks of GenAI systems

On testing and how that needs to
become an integral part of the
development process

Opportunities to share experiences
among testing practitioners and the
organisations deploying GenAI apps

Macro-level: (e.g., how to sensitise
senior leaders on risk)

Specific: (e.g., the best metrics to test
translation quality)

The need for multi-stakeholder
engagement around testing

not just with developers but also
business leaders, product owners,
Subject Matter Experts and risk/
compliance teams

Even non-technical stakeholders (have) to be part of the AI assurance ecosystem.  
That is where the opportunity is as well. 
Fion Lee-Madan,Fairly AI

02 Standardisation of “what to test” and “how to test”

Across the test lifecycle: Risk
assessment, test selection, test
execution, test configuration, and
result interpretation

Should result in inter-operable/
portable tests and consistency in
results (same system, two testers =
same outcome)

Ideally, also linked to policy/
regulation positions where it makes
sense (e.g., on the use of automated
red-teaming or LLMs as a judge)

We need standards around the mechanisms to assess accuracy or safety, so that results from different
tools and vendors are comparable 
Yifan Jia – AIDX

03 Accreditation

Accreditation scheme for AI testing/ assurance
providers (services and software)

As a way of ensuring consistency, common
assessment standards and greater confidence among
deployers and end-users

Formal accreditation of vendors and their test approaches could also help in assuring consistency and
ensuring a common standard of assessment 
Miguel Fernandes – Resaro AI

22 Testing Real-World Generative AI systems

04 Support for Automation as a way of scaling up

Scalable test environments with stable APIs and
broad platform support

Democratised access to testing technologies (not just
limited to frontier labs, big technology firms or the
largest enterprises)

There’s too much headache over the cost and complexity of mobilising testing and assurance
technology, particularly for actors who cannot rely on deep LLM expertise or large security budgets 
Nicolas Miailhe – PRISM Eval

IMDA and AIVF will take these
inputs into consideration as
they shape their roadmap.  
A few immediate actions 
are underway.

Sharing the outcomes from the Assurance Pilot widely, engaging with AIVF members (200
organisations) and the broader community.

Consultation on the IMDA Generative AI Testing “Starter Kit”, containing a set of voluntary
guidelines that coalesces rapidly emerging best practices and methodologies for app
testing . At this stage, the starter kit covers 4 risks: hallucination, undesirable content, data
disclosure, and vulnerability to adversarial attack.

Incorporation of both the pilot findings and the Starter Kit into the AIVF open source GenAI
testing toolkit roadmap.

Continuation of the collaboration platform provided by the pilot in a different form - e.g., an
assurance clinic. The first members of the next cohort are already on-board.

The journey towards making GenAI applications reliable in real-world settings has just started. IMDA and AIVF look
forward to continued collaboration with AI builders, deployers and testers, as well as policy makers locally and
internationally, on this important initiative.

	cover
	Table of Contents
	Executive Summary 1
	Executive Summary 2
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22

