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Executive Summary
From Model Safety to Application Reliability

As Generative AI (“GenAI”) transitions 
from personal productivity tools and 
consumer-facing chatbots into real-world 
environments like hospitals, airports and 
banks, it faces a higher bar on quality and 
confidence. 

01 Risk assessments depend heavily on the context of the use case – 
e.g., lower tolerance for error in a clinical application than a 
customer service chatbot.

02 Given the higher complexity involved in integrating foundation 
models with existing data sources, processes and systems, there 
are more potential points of failure.

However, much of the current work around AI testing focuses on the safety of foundation models, rather than the reliability of end-
to-end applications. The Global AI Assurance Pilot was an attempt to address this gap: not through academic research, but by 
building upon real-life experiences of practitioners around the world.

Learning by doing.

The pilot matched 17 deployers of GenAI applications with 16 specialist AI testing firms. These organisations were based in 
Singapore and 8 other jurisdictions, providing a significant international lens. The primary objective was to surface and codify 
emerging norms in technical testing of GenAI applications. The 17 applications were aimed at a mix of internal (12) and external (5) 
users. There was a human in the loop in most (12) cases. 10 industries were represented, including banking, healthcare and 
technology. Large Language Models (LLMs) were utilised in a variety of ways in these applications: summarisation, retrieval 
augmented generation, data extraction, chatbots, classification, translation, agentic workflows and code generation.

The “what” and “how” of testing GenAI applications

Deciding what to test (or not!) 
was a non-trivial exercise.  
The 3 risks that interested most 
deployers were accuracy and 
robustness, use case specific 
regulation and compliance 
requirements, and content safety

Off-the-shelf LLM benchmark test 
datasets were rarely used to 
conduct the tests, except to test 
content safety in external facing 
applications. Use-case specific test 
data sets were used most often, 
though many decided to 
supplement these with adversarial 
red-teaming or simulation testing 
for edge-case scenarios.

The 2 most popular ways to 
evaluate test results were human 
review and LLMs-as-judges. Many 
participants highlighted that while 
the latter are versatile, scalable 
and accessible, they carry risks and 
require mitigating controls.
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Getting GenAI testing right: 4 practical recommendations

01 Test what matters

Your context will determine what risks you should (or 
should not!) care about. Spend time upfront to design 
effective tests for those.

02 Don’t expect test data to be fit for purpose

No one has the “right” test dataset to hand. Human and 
AI effort is needed to generate realistic, adversarial and 
edge case test data.

03 Look under the hood

Testing just the outputs may not be enough. Interim 
touchpoints in the application pipeline can help with 
debugging and redundancy. With agentic AI 
applications, this becomes a necessity.

04 Use LLMs as judges, but with skill and caution

Human-only evaluations will not scale. LLMs-as-judges 
are necessary but require careful design and human 
calibration. Cheaper, faster and simpler alternatives 
exist, in some situations.

There was also an overwhelming reinforcement of the critical role of human experts, at every stage of the GenAI testing lifecycle.

What comes next?

Pilot participants suggested 4 areas for future collaboration:

Building awareness 
and sharing emerging 
best practices around 
GenAI testing

Moving towards 
industry standards 
around “what to test” 
and “how to test”

Creating an 
accreditation 
framework for testing

Supporting greater 
automation for 
technical testing

The launch of IMDA Starter Kit – for consultation – is an initial step to address some of these requests.

The journey towards making GenAI applications reliable in real-world settings has just started. IMDA and AIVF look 
forward to continued collaboration with AI builders, deployers and testers, and policy makers, on this important 
initiative
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�� Introduction
The AI Verify Foundation (AIVF) is a non-profit subsidiary of Singapore’s Infocomm Media Development Authority (IMDA).  Its 
mission is to support the creation of a trusted AI ecosystem through access to reliable AI testing capabilities.   

Together with its parent IMDA, the AIVF launched the Global AI Assurance Pilot in February 2025, to help codify emerging norms 
and best practices around technical testing of Generative AI (“GenAI”) applications. Existing, real-world GenAI applications were 
put to the test, pairing organisations that had deployed them with specialist AI testing firms.

1.1 Rationale

The pilot was motivated by three core beliefs:

001

GenAI can have a massive, 
positive impact on our society 
and economy – if it is adopted 
at scale in public and private 
sector organisations.

002

Such “real-world” adoption 
requires GenAI applications to 
operate at a much higher level 
of quality and reliability (vs. the 
general-purpose models that 
underpin them).

003

The extensive work underway on 
AI model safety and capability is 
necessary, but not sufficient, to 
help meet that higher bar.

Large Language Models (LLMs) and their multi-modal equivalents are being adopted extensively as personal productivity tools. 
However, to have real transformational impact, GenAI must get embedded in the public and private sector organisations that drive 
critical parts of the economy, such as health, finance, utilities and government services.

Using GenAI in such real-world situations, 
at scale, raises the quality and reliability 
bar significantly. Two factors account for 
this difference: Context and Complexity. 

Most academic and technology industry efforts 
around AI testing have tended to focus on Model 
safety and alignment. A shift is required – from the 
Safety of Foundation Models to the Reliability of 
the end-to-end Systems or Applications in which 
they are embedded.

Models E2E Systems

AI Safety AI Reliability

01 Context

Unlike a general purpose LLM chatbot application or personal 
productivity tool, a GenAI-enabled application must operate in the 
specific context of a use case, organisation, industry and/or socio-
cultural expectations. For example, a GenAI application in a healthcare 
setting may have very low levels of tolerance for “hallucination” 
compared to one used as an internal employee helpdesk. 

02 Complexity

Real-life GenAI applications are also likely to have more layers of 
complexity. They may use LLMs in conjunction with existing data 
sources, processes and systems, creating additional potential points of 
failure beyond the LLM.

The pilot was an attempt to start enabling that shift – not through new academic research or technical development, but 
through real-world experience.
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1.2	Target outcomes

The pilot was launched with 3 target outcomes

Testing norms and 
practices

� Inputs into future standards 
for Technical Testing of Gen 
AI applications

Foundations for a viable 
assurance market

� Greater awareness of the 
ways in which external 
assurance can build trust in 
GenAI applications and 
enable adoption at scale�

� A foundation for potential 
accreditation programmes in 
the future

AI testing tool roadmaps

� Inputs into the product 
roadmaps for open source 
and proprietary AI testing 
softwar�

� Specific focus areas for 
AIVF’s Moonshot platform

1.3	Ground rules

The pilot had three ground rules:

01

The application must involve the 
use of at least one LLM or multi-
modal model 

02

The application must be live or 
intended to go-live (not Proofs-
of-Concept)

03

The exercise must focus on 
technical testing (not process 
compliance)

04

Testing should be conducted on the GenAI application 
(not just the underlying foundation model)

05

Testing must be conducted by an external party – i.e., 
an organisation different from the one that has built 
and/or deployed the application.

IMDA and AIVF sought no access to the actual results of the technical tests. The focus was on understanding how the deployer 
saw the associated risks, how technical tests were designed and implemented to assess them, and the lessons learnt from the 
exercise.
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�� Pilot participants and use cases
33 organisations from ~10 geographies and industries participated in the pilot. The use cases spanned a broad range of functional 
areas and LLM usage archetypes. Almost all were already in production, though mostly with humans in the loop.

2.1	Participant profile

GenAI applications from 17 organisations were put to the test during the pilot

Healthcare/ Pharma Banking, Insurance, Fintech

European Insurer

IT/ Software Others

High-tech Manufacturer

Each of these organisations was paired with 1 (or 2) of 16 specialist firms that provide software and/or services to test GenAI 
applications. In some cases, the “pairing” was done by the participants themselves, whereas in others, AIVF helped match 
deployers with testers.

16
Leading AI testing 
specialists

About half of these 33 organisations were based in Singapore. The remaining came from 8 other jurisdictions– Canada, France, 
Germany, Hong Kong, Switzerland, Taiwan, UK, US.

1Applications were deployed by the named organisations- except in the case of MIND Interview, Tookitaki, Unique, ultra mAInds and Fourtitude . All of these were intended to be 
deployed at their B2B clients.

2 In two cases, more than one testing firm was involved (Changi Airport with PRISM Eval and Guardrails, and ultra mAInds with Aiquris and AIDX). One testing firm-Ragas-provided 
support and expert advice without directly partnering with a deployer
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2.2	Use cases Background

97

1
Is The Application Live?

In production

In Beta and/or with 
selected users

In testing

16 of the 17 use cases were already live in production.

7 of them were in beta or/or rolled out to a limited group of users. 

10

5

2 Who Are The Target 
Users?

Internal (all staff)

Internal (specialist)

External

A majority were targeted at specialist users inside an organisation (e.g., 
software engineers at NCS). 5 were customer/ citizen-facing. 

5

12

Is A Human In The Loop?

Yes

No

A human was “in the loop” in more than 2/3rd of the cases. Even in the 
remaining 5, there was significant human involvement outside the 
immediate workflow of the application.

Full list of use cases

# Tester(s) Deployer Use case

1 Advai Checkmate On-demand Scam and Online Fact-checker

2 AIDX Fourtitude Customer Service Chatbot (“Assure.ai”) for publicsector and utility clients

3 AIDX Synapxe HealthHub AI Conversational Assistant 

4 AIDX/Aiquris ultra mAInds No-code AI-powered Retrieval Augmented Generation platform for Enterprise search and data connectivity

5 Fairly MIND Interview AI-enabled Candidate Screening and Evaluation tool

6
Guardrails

PRISM Eval

CAG AskMax Virtual Concierge Chatbot

7 Knovel HTX Productivity Co-pilot

8 LatticeFlow Confidential Investment Insights for Relationship Managers

9 Parasoft NCS AI-enabled Coding Assistant for refactoring code

10 PwC SCB Client Engagement Email Generator for Wealth Management Relationship Managers

11 PwC UOB Internal Q&A Chatbot

12 Quantpi Unique Investment Research Assistant

13 Resaro MSD Confidential

14 Resaro Tookitaki FinMate Anti-Money Laundering Assistant

15 Softserve CGH Medical Reports Summarisation,

16 Verify AI Confidential Public Road Safety Chatbot

17 Vulcan
High-tech 
Manufacturer

Multi-lingual Internal Knowledge Bot
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2.3	Patterns of LLM usage 

Across the 17 applications, LLMs3 were 
used in diverse ways. 
 


The top 3 usage patterns were 
Summarisation, Retrieval Augmented 
Generation and Data Extraction from 
unstructured sources. These patterns 
align with the focus of many of these 
applications on staff productivity 
improvement.  


LLMs were also used to power multi-
turn chatbots, and to help translate 
between languages. Relatively few used 
LLMs as part of agentic workflows – yet.

How are LLMs used in the application?

16

12

08

04

00

15

Summarisation

13

Retrieval Augmented Generation - RAG

12

Data extraction from unstructured sources

10

Multi-turn chatbot

8

Classification or Recommendation

6

Translation

3

Orchestrator for an agentic flow

2

Drafting email

2

Multimodal (video/ audio to text or vice versa)

1

Code re-factoring

The table below maps each of the 17 applications to the different LLM usage modalities:

Table - How Are LLMs Used in the Applications?			

Tester Depoyer SUM TRA DAT CLA MUL RAG CHT COD AGE EML

Advai Checkmate

AIDX Fourtitude

AIDX Synapxe

AIDX/Aiquris ultra mAInds

Fairly Mind Interview

Guardrails

PRISM Eval CAG

Knovel HTX

LatticeFlow European FI

Parasoft NCS

PwC SCB

PwC UOB

Quantpi Unique

Resaro MSD

Resaro Tookitaki

Softserve CGH

Verify AI Confidential

Vulcan High-tech 
Manufacturer

Legend

SUM Summarisation TRA Translation DAT Data extraction from unstructured sources MUL Multimodal (video/ audio to text or Vice versa) RAG Retrieval Augmented Generation

CHT Multi-turn chatbot CLA Classification or Recommendation COD Code Refactoring AGE Code Refactoring EML Drafing email

3 In a couple of cases, multi-modal models were also used
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3. Risk Assessment and Test Design

There are 4 key choices to be made when designing tests for a Generative AI application:

Risks that matter the most 
for the application

Metrics to help assess the 
prioritised risks in a 
quantifiable manner

Dataset provided as input 
to the application 

Evaluator to assess the 
output from the application

3.1	Risk Assessment

At the outset, each deployer defined the risks that mattered most tothem. A subset was selected for testing during the pilot timelines.

What risks were prioritised and tested during pilot?
(number of use cases)

20

15

10

05

00

2

2
1

3
2

3

1

1

15

In-accuracy, incl (lack of) robustness & completeness

9

Breach of Use-case specific compliance or regulation

9

Content safety

5

Reputation risk

5

Unfair bias

3

Security

3

Inappropriate data disclosure

1

Inadequate User Trans-parency

Risks tested during pilot

High priority but not tested during pilot

In line with the focus on summarisation, RAG and 
data extraction as the top LLM use patterns, 
deployers saw the highest risk in outputs that 
were inaccurate, incomplete or insufficiently 
robust. 


With many use cases in regulated industries, the 
risk of not meeting existing, non-AI-specific 
regulations or internal compliance requirements 
came next. Content safety was also considered 
important, particularly for applications facing off 
to external users.

The following examples illustrate how the specific context of individual use cases led to the risk prioritisation by the deployers.

Deployer Use case Example of prioritised risk

Checkmate On-demand Scam and Online Fact-checker
Malicious attackers seeking to undermine its effectiveness - e.g., falsely 
labelling fraudulent messages as authentic - or availability - e.g., denial of 
service through prompt injection.

Fourtitude
Customer Service Chatbot (“Assure.ai”) for public 
sector and utility clients in Malaysia

Content that potentially offends Malaysian religious, cultural and racial 
sensitivities

Synapxe HealthHub AI Conversational Assistant
Content that could pose a risk to an individual's wellbeing - e.g., mental 
health, healthcare habits and alcohol consumption

MIND Interview AI-enabled Candidate Screening and Evaluation tool
Unfair bias, which is a key consideration for recruitment-related laws in 
many jurisdictions 

NCS AI-enabled Coding Assistant for refactoring code Poor quality and/or insecure refactored code

Standard Chartered
Client Engagement Email Generator for Wealth 
Management Relationship Managers

Non-adherence to relevant regulation & internal compliance requirements 
around provision of investment advice to clients

ChangiGeneral Hospital Medical Report Summarisation Inaccurate fact extraction and/or surveillance recommendations for individual patients
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3.2	Metrics

Once the priority risks have been identified, appropriate metrics need to be defined to quantify the results of the testing.

For example:

Deployer Prioritised risk Metric(s) chosen

MIND Interview Unfair bias Impact Ratios by sex, race, and sex + race

Standard Chartered AccuracyRobustness
Hallucination and Contradiction rate (Accuracy)

Cosine similarity of generated drafts with the same inputs (Robustness)

Tookitaki Accuracy
Presence and correctness of key entities (amounts, dates, names - post-masking) and critical 
instructions in Narration generated by assistant (Precision/ Recall/ Faithfulness)

Synapxe  Unsafe content Point scale to judge how well the Synapxe/ Health Hub chatbot was able to block out-of-policy requests

Changi Airport False refusal % of refused requests subsequently found to be within application’s mandate and RAG context

Unique Accuracy/ Irrelevance Word Overlap Rate, Mean Reciprocal Rank, Lenient Retrieval Accuracy to assess Search layer

3.3	Testing approach: Test datasets

There are 4 alternatives 
when it comes to sourcing or 
creating the datasets needed 
to test the GenAI 
application. Testers in the 
pilot used all four.

How did they conduct the tests?
(Number of Use Case)

00 05 10

Simulation testing (eg for edge cases) 10

Use-case specific test data 9

Red-teaming (adversarial) 7

Classification or Recommendation 5

01 Benchmarking

Definition 

Benchmarking involves presenting the application with a standardised set of 
task prompts and then comparing the generated responses against pre-
defined answers or evaluation criteria

Was used in instances where the application was to be tested for 
generalisable risks such as content toxicity, data disclosure or security.

Was not used when application was to be tested for context-specific 
risks, such as accuracy and completeness of answers sourced from the 
deployer’s internal knowledge base

Example

Parasoft: Testing of NCS’ AI-refactored code 
against its standard security and code 
compliance requirements.

AIDX: Testing of Synapxe’s and ultra mAInds’ 
applications vs. generic content safety 
benchmarks.
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02 (Adversarial) Red-Teaming

Definition 

Red-teaming is the practice of probing applications for system failures or 
risks such as content safety or sensitive data leakage. Can be done 
manually, or automated using another model.

Was used when dynamic testing - e.g. through creative prompt 
strategies, multi-turn conversations - was required, compared to static/ 
structured benchmarks 

Was used not just in external-facing applications, but also where the 
potential harm from malicious internal actors was significant

Example

PRISM Eval: Use of proprietary Behavioural 
Elicitation Tool to map the responses of Changi 
Airport’s Virtual Assistant across 6 content 
safety areas

Vulcan: Attempts to make the knowledge bot at 
high-tech manufacturer disclose confidential IP 
or the meta-prompts underpinning the 
application

03 Use-case specific test data

Definition 

Use-case-specific test datasets are static and structured like benchmarks but 
relate to only the specific application being tested. Such datasets can be 
historical, sourced from production runs or synthetically generated

Default option in most pilot use cases

Conceptually familiar to business and data science teams

Limited availability of historical data in most pilot use cases, but several 
used “realistic” synthetic data

Example

Softserve: use of historical data to test Changi 
General Hospital’s Medical Report 
Summarisation application.

Verify AI: use of an LLM to generate 
representative questions from the original 
document used in the Road Safety Chatbot 
RAG application

04 Simulation tests (non-adversarial)

Definition 

Simulation testing involves increasing test coverage, by simulating long tail 
or edge case scenarios and generating synthetic data corresponding to 
them. Also referred to as “stress testing”

Was used where the application’s ability to respond to out-of-distribution 
test cases was to be tested

Required combination of human creativity - to come up with relevant 
scenarios - and automation – to generate synthetic test data at scale

Example

Guardrails AI: Large-scale simulation testing on 
Changi Airport’s Virtual Assistant to generate 
realistic, diverse scenarios that reveal critical 
failure modes around hallucination, toxic 
content and over-refusal

Resaro: Series of perturbation techniques - e.g., 
missing value imputation, error injection, 
numeric and logical errors - applied to 100 “in 
distribution” queries from deployer Tookitaki

3.4	Testing approach: Evaluators

Evaluators are tools or methods used to apply a selected metric to the application’s output and generate a score or label. 
 


Human experts are often considered to be the “gold standard” when it comes to assessing whether the output from an 
application meets defined criteria. However, by definition, this approach is not suited for automated assessments and thus, not 
scalable. 


The alternative is to use rule-based logic, traditional statistical measures such as semantic similarity, an LLM as a judge, or another 
smaller model. Typically, the more probabilistic the technique, the greater the need for careful human review and calibration of the 
test results.
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How did the pilot participants evaluate test results? (Number of Use Cases)

Tester Depoyer
Human 
judgement or 
review Rule-based logic

Surface-level/ 
Semantic 
metrics LLM-as-judge

Non-LLM model 
as judge

Advai Checkmate

AIDX Fourtitude

AIDX Synapxe

AIDX/Aiquris ultra mAInds

Fairly Mind Interview

Guardrails

PRISM Eval

CAG

Knovel HTX

LatticeFlow European FI

Parasoft NCS

PwC SCB

PwC MNC Bank

Quantpi Unique

Resaro MSD

Resaro Tookitaki *
Softserve CGH *
Verify AI Insurer ^
Vulcan

High-tech 
Manufacturer

Total 14 9 5 13 4

Legend * LLM used to extract facts as part of eval

^ Statistical models used to check effectiveness of LLM-as-judge

01

Most testers in the pilot (14) 
used LLMs as judges, due to 
their versatility and accessibility

02

Human reviewers were used 
often (13) to evaluate bespoke, 
small-scale tests and to calibrate 
automated evaluation scores 
particularly when using LLM-as-
a-judge.

03

Rule-based logic was popular 
(10) wherever LLMs were being 
used in data extraction

04

Smaller models – as alternatives to LLMs – were used 
less frequently (4) in the pilot, but are more likely when 
testing at scale, due to their simplicity and cost 
effectiveness

05

Statistical measures like BLEU were less popular
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4. Test Implementation 

4.1	Test Environment

Most (10) testers used their own proprietary testing platform to execute the tests. Installing these within the deployer’s network 
was difficult within the short timeframe of the pilot. However, this option was still feasible if 

The GenAI application allowed external access via API, and/or 

Relevant input/ output/ trace data could be shared externally by deployer with appropriate anonymising/ safeguards

In the remaining instances, a mix of bespoke testing scripts and tester’s existing testing libraries were used. In at least two cases, 
the tester was onboarded by the deployer into a staging environment for the testing exercise.

4.2	Test data and effort

Given the time spent upfront to define “what to test” and “how to test”, limited time was available for actual test execution. As a 
result, test sizes were relatively small. Most testers used a few hundred test cases, though two (PRISM Eval and Verify AI) went into 
tens or even hundreds of thousands.



The effort needed from the deployer and tester teams varied. Many required a total of 50-100 hours’ worth of effort over 2-4 
weeks, though a few required hundreds. Infrastructure and LLM costs were inconsistently shared, but do not appear to have been 
significant in the context of this limited pilot period.

4.3	Implementation challenges

The difficulty of finding, or 
generating, test data that 
is realistic, able to cover 
edge cases and anticipate 
adversarial attacks, was 
seen as a common 
challenge by most pilot 
participants.

Implementation Challenges During Testing (Number of Use Cases)

00 05 10 15

Finding/ generating relevant test data 13

API access/ throughput/ latency/ performance 5

Confidentiality, Privacy, Security constraints 5

Lack of granular tracing inside app pipeline 4

Access needed to SMEs 4

Repeatability of test results 3

Beyond that, testers also found the following aspects challenging:

Confidentiality, Security and Privacy constraints: impacted access to relevant test data, system prompts and even the actual application. 
API Access, Throughput, Latency and Performance.
Lack of granular tracing access inside the application pipeline: resulting in limited ability to test and debug at interim points.
High demand for access to human subject matter experts: e.g., to annotate “ground truth” or calibrate results of automated testing.
Lack of consistency: Differences in response from the same application, to the same input, making it difficult to create consistent test results.

Some testers were also concerned about not sharing too much publicly on their proprietary testing approach (particularly for 
adversarial benchmarking and red-teaming efforts) or on the internal architecture of the applications being tested. These concerns 
have been incorporated when drafting the report. 
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5. Lessons learnt 

Observing the 17 sets of pilot participants as they went about testing the applications - prioritising risks, defining test metrics, 
coming up with suitable test datasets and evaluators, and executing the tests in constrained conditions – provided invaluable 
insights. These have been distilled into 4 practical recommendations.

001

Test what matters
Your context will determine what risks you should (and 
shouldn’t!) care about. Spend time upfront to design 
effective tests for those.

002

Don’t expect test data to be fit for purpose
No one has the “right” test dataset to hand. Human and 
AI effort is needed to generate realistic, adversarial and 
edge case test data.

003

Look under the hood
Testing just the outputs may not be enough. Interim 
touchpoints in the application pipeline can help with 
debugging and increase confidence.

004

Use LLMs as judges, but with skill and 
caution
Human-only evals don’t scale. LLMs-as- judges are often 
necessary, but need careful design and human 
calibration. Cheaper, faster alternatives exist in some 
situations

5.1	Test what matters

In theory, it should be easy to determine “what to test” in a GenAI application. In practice, three factors made it challenging for 
the pilot participants.

01 Broad risk surface

Extensive, rapidly evolving and 
often daunting list of risks 
associated with GenAI 
technologies in public domain.

Difficult for lay persons, or 
even technical/ functional 
experts, to discern what might 
apply to a specific situation

02
Unfamiliar territory for 
automation efforts

GenAI use cases often in areas 
that have traditionally not seen 
attempts at automation

As a result, there are fewer 
precedents to call upon, when 
defining good and bad 
outcomes

03
Non-quantitative nature of 
outputs

Specifying “what good looks 
like” is subjective and much 
harder, when the output is in 
free text - e.g., Is this summary 
of the source text good 
enough?

In comparison, most traditional 
models have numeric or 
categorical outputs, and suited 
for clear-cut assessments

The pilot provided useful tips around the most effective ways of addressing these challenges.
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01 To narrow down the risk surface, two approaches have been useful

Structured down-selection

Start with a comprehensive GenAI risk assessment 
framework - which are often mapped to relevant regulation/
guidelines – and use a structured process to rate the 
relative importance of each risk for the specific use cases. 
Examples: Aiquris-ultra mAInds, PwC – Standard Chartered 
and NCS – Parasoft.

Bottom-up approach

Start with the perspective of what really matters to the 
deployer and impacted stakeholders – without referring to 
regulatory or compliance frameworks in the first instance. 
Examples; AIDX – Fourtitude and Guardrails/ PRISM Eval - 
Changi Airport (incidentally, both public-facing customer 
chatbots).

Both options can work, sometimes even in conjunction. The former provides more comfort when regulatory compliance is a key 
consideration for testing. The latter is often faster and more pragmatic, but could require follow-up to justify decisions.

02 To overcome the lack of precedents to determine good and bad outcomes

Engage early and 
extensively with Subject 
Matter Experts (SMEs) – 
e.g., with a designated 
medical practitioner at 
Changi General Hospital

Observe outcomes from 
historical or live 
production experience 
where possible – e.g., 
assessing where the end-
user or human in the loop 
is ignoring/ over-ruling the 
automated output

Conduct simulation 
testing to identify 
potential failure points in 
edge cases – e.g., at 
Changi Airport

Leverage the experience 
of specialist testers who 
have built targeted 
benchmarks and red-
teaming techniques for 
similar risks

Finally, finding quantitative metrics to assess the qualitative outputs is the area that has seen significant practitioner activity 
already. Tap on the experience of specialist testers and major open source LLM app eval projects.

03 To find appropriate quantitative metrics to assess qualitative outputs

Tap on the experience of specialist testers and major open source LLM app eval projects

Make sure that the SME is engaged to shape, review and approve the definition and specific implementation of metrics.  
For example:

When using a standard “faithfulness” metric to assess 
LLM application output vs. the context provided to it. 
However, it is important to know whether the metric is 
measuring the extent to which the output (a) can be 
backed up by the context, or (b) is not contradicted by 
the context. Needless to say, these metrics measure 
very different things!

When using a standard “summarisation quality” metric, 
the prompt used to assess the completeness of the 
summary may be equally weighted to all the key claims 
in the source context. However, in specific situations, 
getting a particular piece of information – say, the 
number of polyps in a colonoscopy report – might be a 
“deal-breaker”, invalidating the summarisation score
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5.2	Don’t expect test data to be fit for purpose

13 out of the 17 pilot participants identified “finding the right test data” as a major challenge during testing. Expect this challenge 
to exist by default in almost every GenAI testing situation. Budget design and engineering effort, and SME engagement, to 
address it.

Historical data

At Changi Hospital, historical records were available 
for individual patients. However, a degree of fresh 
annotation was needed to make that data suitable for 
automated testing. Anonymisation efforts may also be 
needed sometimes, depending on how the historical 
records were stored.

Live production data

Not an option during the pilot but can be a relevant 
option after an application has been live for some 
time. However, not all applications retain sufficiently 
granular traces from the application’s responses in the 
production environment. Additional steps around data 
anonymisation may also be needed

Adversarial red teaming

At Changi Airport, PRISM Eval helped create 
thousands of adversarial attempts by applying their 
Behaviour Elicitation Tool to the multi-turn chatbot. At 
Fourtitude, AIDX used seed prompts to create 
adversarial attacks specific to the Malaysian religious, 
racial and cultural context.

Simulation testing

At Changi Airport, Guardrails AI created a series of 
target user personas with inputs from business, and 
then used a mix of human creativity and LLM-based 
automation to generate large volumes of prompts that 
could test the chatbot’s likely responses in edge-case 
scenarios.

These guest blogs from Guardrails AI and Advai provide practical guidance on red teaming and simulation testing respectively
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Guest blogs

Learning from self-driving cars: Simulation Testing
By Safeer Mohiuddin, Co-founder, Guardrails AI

Visit San Francisco today, and you can summon a Waymo self-
driving car - no human driver required. Surprisingly, the 
fundamental technology enabling these self-driving cars has 
changed little in the past decade. What's truly advanced is the 
painstaking process of identifying and solving the 'long tail' of 
edge cases - those rare but potentially catastrophic scenarios 
that could lead to accidents. 



This journey mirrors the challenges facing GenAI application 
builders today, where the non-deterministic nature of large 

language models creates not only safety but reliability 
concerns.  Effective GenAI systems require both rigorous 
testing to identify edge cases during development and 
protective guardrails once in production—mirroring the dual 
approach that ultimately brought self-driving cars from 
concept to reality.



Catching a 0.01% failure with 99.99% confidence requires 
testing approximately 10,000 prompts per risk category—
making blind brute-force testing untenable.

Catching a 0.01% failure with 99.99% confidence requires testing approximately 10,000 prompts per risk category—making blind 
brute-force testing untenable  

Building on lessons from autonomous vehicles, we've identified four complementary testing approaches that together form a 
comprehensive strategy.

Technique Goal Zones Tested Metrics

Static Dataset Precision Known-knowns Pass-rate threshold (“≥ 95% must pass”)

Simulation Testing Coverage Known-unknowns, Edge cases Failure density (“1 critical per 5K runs”)

Human Review Alignment Subjective failures Human-quality mean

Redteaming Resilience Adversarial unknowns Time-to-bypass

Simulation testing stands out in this ladder by generating thousands of diverse test cases at scale—uncovering hallucinations, off-
topic responses, and policy violations that manual test creation would miss.. By mastering edge case generation, we can build AI 
systems that handle the unexpected with the same reliability that finally brought self-driving cars safely onto our roads.
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Guest blogs

Synthetic Data for Adversarial Testing
By David Sully, Co-Founder, Advai

Why do we break things? 


If you ask a toddler, it’s probably just for fun. But as we grow 
up, we break things to understand them better. You can only 
get so far with theory—eventually, you need to smash 
something. 


Whether it’s particles in an accelerator or a car with crash 
dummies, breaking things reveals how the universe works or 
how a seatbelt can save your life. AI is no different – at some 
point, you need to try and understand what will happen when 

it experiences things it should not. And for that, you need 
Adversarial Testing.Adversarial testing involves feeding in 
data designed to break your AI model—until it breaks. The 
ease with which it fails helps you understand its true 
boundaries: what it handles well, where it struggles, what it 
detects reliably, and what it cannot be trusted with. 
 

Adversarial testing isn’t just a red-teaming trick—it’s the way 
to truly understand AI systems. If you’re not doing it, you 
probably don’t know your system as well as you think.

Yes, this is an expert-led craft. But if you're going solo, here’s a crash course:

01 Define Your Use Case and Critical Failure Modes

Where failure is unacceptable? Bias, 
hallucinations, being tricked (e.g. prompt 
injections), fairness, safety? Prioritise what 
matters most.

02 Use Data Mutation Techniques

Modify real data to stretch model limits,  
for example:

Text typos, paraphrases, entity swaps, jailbreaks, injections

Images occlusion, lighting, clutter, adversarial noise

03 Leverage Generative Models

Prompt LLMs or diffusion models to create hard-
edge examples—corner cases, misleading 
phrasing, traps your model might fall into.

04 Measure and Benchmark

Numbers mean more in context. Benchmark 
different models or versions side-by-side to see 
what truly improves.

05 Automate It

You're in AI—automate your adversarial pipeline! 
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5.3	Look under the hood

A key difference between testing an LLM and a GenAI application that uses it is the possibility, and sometimes necessity, of testing 
inside the application pipeline. 


For example, consider this grossly simplified representation of a hospital’s application to summarise medical reports, and 
recommend personalised surveillance protocols based on established industry guidelines.

The default approach to testing would be to look at the final 
output, and assess whether the personalised recommendation 
for the patient, as well as the key facts extracted from the 
source medical reports, were in line with the “ground truth” 
set by a human SME. An LLM-based summarisation quality 
score could be used as the comparison metric.

Source Reports Medical Guidelines Key Facts & Recommendations

At Changi General Hospital, this was the starting point. As part of the pilot exercise, tester Softserve introduced two additional 
tests:

01 Additional test

Compare the key facts extracted by the LLM from the 
source reports with the ground truth version of the 
key facts

02 Additional test

Compare the recommendation implied by the key 
facts from #1 through the deterministic “decision 
tree” underpinning the standard industry guideline

Such an approach can provide several advantages, though it also entails greater effort and is therefore more suited to high-stakes 
use cases.

Redundancy in automated evaluations: additional triangulation points for the final output’s summarisation score.

Assistance in debugging application: additional traceability can help understand root causes for poor summarisation scores in the final output

Lower dependence on LLMs as judges: Python scripts rather than LLM-based evaluators used for the incremental two tests.

Another example of the advantages of looking “under the hood” comes from the red teaming exercise conducted by Advai on 
Checkmate’s multi-step agentic flow. By knowing the hand-offs at each step of the agentic workflow, the Advai team were able to 
refine their adversarial attacks on the application.

What about Agentic AI?

“Looking under the hood” becomes even more important in the 
context of real-life applications that use agentic workflows. The 
example below – from outside the pilot – illustrates a basic 
agentic workflow to conduct fraud investigations, and the granular 
testing to which it may lend itself
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5.4	Use LLMs as judges, but with skill and caution

Using LLMs as judges is unavoidable for evaluation of GenAI applications in many instances. For example, when assessing a 
response from a GenAI application on:

01

Nuanced 
considerations such as 
consistency with 
company values

02

Appropriateness from a 
racial or religious 
sensitivity perspective

03

Quality of language 
translation

04

Completeness and 
accuracy of 
summarisation

In all these examples, it is possible to use a human SME as an alternative. However, this can be costly and difficult to scale even in 
pre-production testing. It becomes practically impossible in real-time production environments, unless a decision is taken to 
permanently keep a human-in-the-loop.

Of course, using an LLM as judge carries several risks as well. Mitigating them requires:

01
Skilful and careful prompting when 
constructing the evaluator

02

Extensive human calibration

03
Ongoing monitoring to ensure 
that there are no “silent failures”

04

Concerted effort to explain how they work, and what are 
their limitations, to the non-technical stakeholders 
accountable for the final application

05

Non-trivial spending on LLM credits or compute capacity

Unsurprisingly, almost every tester in the pilot has used LLMs as judges as part of their evaluator design. The detailed case studies 
document the steps they have taken to improve reliability of such automated evaluators. Most of them used extensive human 
calibration to mitigate risks, with some using statistical approaches to ensure evaluation robustness.  


Beyond the pilot stage, it is expected that several of them may find cheaper, simpler and more transparent alternatives such as 
smaller language models, rule-based logic or some combination to replace or complement LLM-based evaluators.
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This guest blog from PwC provides a broader introduction to the pros and cons of using LLMs as judges.

Guest blogs

LLM-as-a-judge: Pros and Cons
Powerful advantages in speed, scalability, and consistency, but effectiveness 
depends on thoughtful design, human oversight, and awareness of limitations
By Leigh Bates, Partner PwC UK and Global Risk AI Leader

Testing tools built on Large Language Models (LLMs) rely on testing and evaluating many prompt-answer pairs over different risk 
metrics, such as accuracy, lack of hallucinations, coverage, robustness as well as adherence to any specific requirements  
(e.g. that an external chatbot shouldn’t make commercial commitments). 

Such evaluation can be done 
using Natural Language 
Processing (NLP) and 
statistical techniques as well 
as human SME evaluation, 
but both pose challenges:

NLP and statistical approaches can act as a good baseline for assessing the 
accuracy of LLMs outputs, but they are not flexible and sometimes fail to capture 
linguistic nuance

Human SME evaluations are more reliable and can add an important layer of 
testing for higher risk use cases. However, obtaining statistically meaningful 
results through human assessment is nearly impossible and impractical.

To address this, PwC has developed AI testing toolkits based on an “LLM-as-a-Judge” approach. LaJ typically involve prompting 
the judge LLM to evaluate whether a given prompt–response pair from an LLM-based system meets a specific requirement. The 
LaJ prompt can be supplemented with ground truth or examples of appropriate outputs. 



Using LaJ in assessing LLM systems has benefits, including:

01
Better ability to approximate 
human-like judgment vs. NLP 
methods, in areas where 
evaluation is qualitative (e.g., tone 
appropriateness, helpfulness).

02

Speed & cost effectiveness of 
executing tests at scale, relative to 
human review

03

Not susceptible to fatigue, unlike 
human reviewers, which could lead 
to fairer and more standardised 
evaluations across large datasets.

04

The potential to use the same LaJ beyond initial testing - 
in ongoing monitoring. This can create dynamic 
performance metrics and associated alerts

05

The potential to extend to Agentic AI system evaluation, 
where multiple LLMs with different instructions interact 
with each other without human intermediaries
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Guest blogs

LLM-as-a-judge: Pros and Cons
Continued from previous page

Of course, there are 
challenges to consider when 
using LaJ for evaluation 
testing:

Heavy reliance on effectiveness of the prompt used to guide it. The more 
complex the assessment, the more elaborate and specific the prompt will need to 
be; this is hard to determine without an element of trial and error.

Lack of transparency in LaJ reasoning, making it difficult to audit decisions or 
understand failure modes, especially when evaluating edge cases/ novel inputs

Risk of biased assessments if using the same underlying model or family of 
models in the LaJ and the LLM application being tested (however, not observed 
in the LLM system assessments we have done so far)

There may be the temptation to rely solely on LaJ outputs due to their convenience. However, it is important to reinforce that 
these tools should supplement (not replace) expert human judgment, especially in high-stakes evaluations. Having human experts 
test a smaller sample of scenarios to ensure the LaJ is working as intended, and interpret some of the LaJ outcomes, is crucial. 

5.5	Keep your human SMEs close!

At every stage of the 
technical testing lifecycle, 
human SMEs have a critical 
role to play.

Narrowing down the risks that genuinely matter in a specific use case

Helping choose or refine the metrics that can best reflect those risks

Annotating test data sets, or creating “seed” scenarios that form the basis for synthetic 
test data generation

Reviewing/ refining/ validating automated evaluators

Interpreting test results and deciding on corrective action if any

There is widespread recognition of the theory of involving SMEs from an early stage. Unfortunately, there is inadequate 
appreciation of the scale of the demands to be placed on the human experts along the way. Additionally, non-technical users often 
lack user-friendly tools to engage throughout this process.



This guest blog from Ragas provides a practical perspective on how to engage human SMEs in a specific step – that of annotating/ 
calibrating automated evaluators.
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Guest blogs

LLMs can’t read your mind
By Shahul E.S, Co-Founder, ragas

Many teams underestimate the criticality of human review when setting up automated evaluations. If your goal is to align your AI 
system with human expectations, you must first define those expectations clearly. Here’s how you can go about it

Step 01 Define what to measure

Ask: What matters in a good response for your use case? Pick 1–3 dimensions per input–response pair. For example, 
response correctness and citation accuracy for a RAG system, or syntactic correctness, runtime success and code 
style for a coding agent.

Step 02 Choose metric type

For each dimension, choose a metric that’s both easy to apply and actionable:

Binary (pass/fail): Use when 
there’s a clear boundary 
between acceptable and 
unacceptable. Example: Did the 
agent complete the task? Yes or 
no.

Numerical (e.g. 0-1): Use when 
partial credit makes sense and 
you can clearly define what 
scores mean. Example: Citation 
accuracy of 0.5 = half the 
citations were incorrect.

Ranking: Use when outputs are 
subjective and comparisons are 
easier than absolute judgments. 
Example: Summary A is better 
than Summary B.

Step 03 Review and evaluate the automated evaluator

Once you are satisfied that you have defined what you 
really want to measure and have found a way to 
automate the calculation of your preferred metric, the 
next step is to assess how well the automated evaluator 
is performing, and whether it is aligned to the human 
subject matter expert’s views.   

However, in doing so, it is essential to collect 
justification alongside it. “Fail” without a reason isn’t 
helpful. On the other hand, a good justification can act 
as crucial training input for your LLM-as-judge.

Finally, do not under-estimate the power of a good user 
interface in making human reviews/ annotations 
painless. Looking at data can be tedious, but a user-
friendly “data viewer” can make it less so. Your data 
viewer should ideally be: (a) tailored to your use case 
(RAG, summarization, agents, etc.); (b) fast to label; and 
(c) structured enough to store data and feedback 
consistently.
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6 What’s next?

Pilot participants provided their views on potential areas for future work. 4 themes emerged:

01 Building Awareness and Sharing Best Practices

More training and awareness of the 
risks

On the risks of GenAI systems 

On testing and how that needs to 
become an integral part of the 
development process

Opportunities to share experiences 
among testing practitioners and the 
organisations deploying GenAI apps

Macro-level: (e.g., how to sensitise 
senior leaders on risk)

Specific: (e.g., the best metrics to test 
translation quality)

The need for multi-stakeholder 
engagement around testing

not just with developers but also 
business leaders, product owners, 
Subject Matter Experts and risk/ 
compliance teams

Even non-technical stakeholders (have) to be part of the AI assurance ecosystem.  
That is where the opportunity is as well. 
Fion Lee-Madan,Fairly AI

02 Standardisation of “what to test” and “how to test”

Across the test lifecycle: Risk 
assessment, test selection, test 
execution, test configuration, and 
result interpretation

Should result in inter-operable/ 
portable tests and consistency in 
results (same system, two testers = 
same outcome) 

Ideally, also linked to policy/ 
regulation positions where it makes 
sense (e.g., on the use of automated 
red-teaming or LLMs as a judge)

We need standards around the mechanisms to assess accuracy or safety, so that results from different 
tools and vendors are comparable 
Yifan Jia – AIDX

03 Accreditation

Accreditation scheme for AI testing/ assurance 
providers (services and software) 

As a way of ensuring consistency, common 
assessment standards and greater confidence among 
deployers and end-users

Formal accreditation of vendors and their test approaches could also help in assuring consistency and 
ensuring a common standard of assessment 
Miguel Fernandes – Resaro AI
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04 Support for Automation as a way of scaling up

Scalable test environments with stable APIs and 
broad platform support

Democratised access to testing technologies (not just 
limited to frontier labs, big technology firms or the 
largest enterprises) 

There’s too much headache over the cost and complexity of mobilising testing and assurance 
technology, particularly for actors who cannot rely on deep LLM expertise or large security budgets 
Nicolas Miailhe – PRISM Eval

IMDA and AIVF will take these 
inputs into consideration as 
they shape their roadmap.  
A few immediate actions 
are underway.

Sharing the outcomes from the Assurance Pilot widely, engaging with AIVF members (200 
organisations) and the broader community.

Consultation on the IMDA Generative AI Testing “Starter Kit”, containing a set of voluntary 
guidelines that coalesces rapidly emerging best practices and methodologies for app 
testing . At this stage, the starter kit covers 4 risks: hallucination, undesirable content, data 
disclosure, and vulnerability to adversarial attack.

Incorporation of both the pilot findings and the Starter Kit into the AIVF open source GenAI 
testing toolkit roadmap.


Continuation of the collaboration platform provided by the pilot in a different form - e.g., an 
assurance clinic. The first members of the next cohort are already on-board.

The journey towards making GenAI applications reliable in real-world settings has just started. IMDA and AIVF look 
forward to continued collaboration with AI builders, deployers and testers, as well as policy makers locally and 
internationally, on this important initiative.
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